|
import sys |
|
import os |
|
from contextlib import contextmanager |
|
|
|
from langchain.schema import Document |
|
from langgraph.graph import END, StateGraph |
|
from langchain_core.runnables.graph import CurveStyle, MermaidDrawMethod |
|
|
|
from typing_extensions import TypedDict |
|
from typing import List |
|
|
|
from IPython.display import display, HTML, Image |
|
|
|
from .chains.answer_chitchat import make_chitchat_node |
|
from .chains.answer_ai_impact import make_ai_impact_node |
|
from .chains.query_transformation import make_query_transform_node |
|
from .chains.translation import make_translation_node |
|
from .chains.intent_categorization import make_intent_categorization_node |
|
from .chains.retrieve_documents import make_retriever_node |
|
from .chains.answer_rag import make_rag_node |
|
|
|
class GraphState(TypedDict): |
|
""" |
|
Represents the state of our graph. |
|
""" |
|
user_input : str |
|
language : str |
|
intent : str |
|
query: str |
|
remaining_questions : List[dict] |
|
n_questions : int |
|
answer: str |
|
audience: str = "experts" |
|
sources_input: List[str] = ["IPCC","IPBES"] |
|
sources_auto: bool = True |
|
min_year: int = 1960 |
|
max_year: int = None |
|
documents: List[Document] |
|
|
|
def search(state): |
|
return state |
|
|
|
def answer_search(state): |
|
return state |
|
|
|
def route_intent(state): |
|
intent = state["intent"] |
|
if intent in ["chitchat","esg"]: |
|
return "answer_chitchat" |
|
|
|
|
|
else: |
|
|
|
return "search" |
|
|
|
def route_translation(state): |
|
if state["language"].lower() == "english": |
|
return "transform_query" |
|
else: |
|
return "translate_query" |
|
|
|
def route_based_on_relevant_docs(state,threshold_docs=0.2): |
|
docs = [x for x in state["documents"] if x.metadata["reranking_score"] > threshold_docs] |
|
if len(docs) > 0: |
|
return "answer_rag" |
|
else: |
|
return "answer_rag_no_docs" |
|
|
|
|
|
def make_id_dict(values): |
|
return {k:k for k in values} |
|
|
|
def make_graph_agent(llm,vectorstore,reranker,threshold_docs = 0.2): |
|
|
|
workflow = StateGraph(GraphState) |
|
|
|
|
|
categorize_intent = make_intent_categorization_node(llm) |
|
transform_query = make_query_transform_node(llm) |
|
translate_query = make_translation_node(llm) |
|
answer_chitchat = make_chitchat_node(llm) |
|
answer_ai_impact = make_ai_impact_node(llm) |
|
retrieve_documents = make_retriever_node(vectorstore,reranker,llm) |
|
answer_rag = make_rag_node(llm,with_docs=True) |
|
answer_rag_no_docs = make_rag_node(llm,with_docs=False) |
|
|
|
|
|
workflow.add_node("categorize_intent", categorize_intent) |
|
workflow.add_node("search", search) |
|
workflow.add_node("answer_search", answer_search) |
|
workflow.add_node("transform_query", transform_query) |
|
workflow.add_node("translate_query", translate_query) |
|
workflow.add_node("answer_chitchat", answer_chitchat) |
|
|
|
workflow.add_node("retrieve_documents",retrieve_documents) |
|
workflow.add_node("answer_rag",answer_rag) |
|
workflow.add_node("answer_rag_no_docs",answer_rag_no_docs) |
|
|
|
|
|
workflow.set_entry_point("categorize_intent") |
|
|
|
|
|
workflow.add_conditional_edges( |
|
"categorize_intent", |
|
route_intent, |
|
make_id_dict(["answer_chitchat","search"]) |
|
) |
|
|
|
workflow.add_conditional_edges( |
|
"search", |
|
route_translation, |
|
make_id_dict(["translate_query","transform_query"]) |
|
) |
|
workflow.add_conditional_edges( |
|
"retrieve_documents", |
|
lambda state : "retrieve_documents" if len(state["remaining_questions"]) > 0 else "answer_search", |
|
make_id_dict(["retrieve_documents","answer_search"]) |
|
) |
|
|
|
workflow.add_conditional_edges( |
|
"answer_search", |
|
lambda x : route_based_on_relevant_docs(x,threshold_docs=threshold_docs), |
|
make_id_dict(["answer_rag","answer_rag_no_docs"]) |
|
) |
|
|
|
|
|
workflow.add_edge("translate_query", "transform_query") |
|
workflow.add_edge("transform_query", "retrieve_documents") |
|
workflow.add_edge("answer_rag", END) |
|
workflow.add_edge("answer_rag_no_docs", END) |
|
workflow.add_edge("answer_chitchat", END) |
|
|
|
|
|
|
|
app = workflow.compile() |
|
return app |
|
|
|
|
|
|
|
|
|
def display_graph(app): |
|
|
|
display( |
|
Image( |
|
app.get_graph(xray = True).draw_mermaid_png( |
|
draw_method=MermaidDrawMethod.API, |
|
) |
|
) |
|
) |