|
|
|
from langchain.embeddings import HuggingFaceBgeEmbeddings |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
|
|
def get_embeddings_function(version = "v1.2"): |
|
|
|
if version == "v1.2": |
|
|
|
|
|
|
|
|
|
model_name = "BAAI/bge-base-en-v1.5" |
|
encode_kwargs = {'normalize_embeddings': True} |
|
print("Loading embeddings model: ", model_name) |
|
embeddings_function = HuggingFaceBgeEmbeddings( |
|
model_name=model_name, |
|
encode_kwargs=encode_kwargs, |
|
query_instruction="Represent this sentence for searching relevant passages: " |
|
) |
|
|
|
else: |
|
|
|
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1") |
|
|
|
return embeddings_function |