TheoLvs's picture
Experimental openalex feature
caf1faa
raw
history blame
4.38 kB
from operator import itemgetter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, RunnableBranch
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.prompts.base import format_document
from climateqa.engine.reformulation import make_reformulation_chain
from climateqa.engine.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template
from climateqa.engine.prompts import papers_prompt_template
from climateqa.engine.utils import pass_values, flatten_dict,prepare_chain,rename_chain
from climateqa.engine.keywords import make_keywords_chain
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, sep="\n\n"
):
doc_strings = []
for i,doc in enumerate(docs):
# chunk_type = "Doc" if doc.metadata["chunk_type"] == "text" else "Image"
chunk_type = "Doc"
if isinstance(doc,str):
doc_formatted = doc
else:
doc_formatted = format_document(doc, document_prompt)
doc_string = f"{chunk_type} {i+1}: " + doc_formatted
doc_string = doc_string.replace("\n"," ")
doc_strings.append(doc_string)
return sep.join(doc_strings)
def get_text_docs(x):
return [doc for doc in x if doc.metadata["chunk_type"] == "text"]
def get_image_docs(x):
return [doc for doc in x if doc.metadata["chunk_type"] == "image"]
def make_rag_chain(retriever,llm):
# Construct the prompt
prompt = ChatPromptTemplate.from_template(answer_prompt_template)
prompt_without_docs = ChatPromptTemplate.from_template(answer_prompt_without_docs_template)
# ------- CHAIN 0 - Reformulation
reformulation = make_reformulation_chain(llm)
reformulation = prepare_chain(reformulation,"reformulation")
# ------- Find all keywords from the reformulated query
keywords = make_keywords_chain(llm)
keywords = {"keywords":itemgetter("question") | keywords}
keywords = prepare_chain(keywords,"keywords")
# ------- CHAIN 1
# Retrieved documents
find_documents = {"docs": itemgetter("question") | retriever} | RunnablePassthrough()
find_documents = prepare_chain(find_documents,"find_documents")
# ------- CHAIN 2
# Construct inputs for the llm
input_documents = {
"context":lambda x : _combine_documents(x["docs"]),
**pass_values(["question","audience","language","keywords"])
}
# ------- CHAIN 3
# Bot answer
llm_final = rename_chain(llm,"answer")
answer_with_docs = {
"answer": input_documents | prompt | llm_final | StrOutputParser(),
**pass_values(["question","audience","language","query","docs","keywords"]),
}
answer_without_docs = {
"answer": prompt_without_docs | llm_final | StrOutputParser(),
**pass_values(["question","audience","language","query","docs","keywords"]),
}
# def has_images(x):
# image_docs = [doc for doc in x["docs"] if doc.metadata["chunk_type"]=="image"]
# return len(image_docs) > 0
def has_docs(x):
return len(x["docs"]) > 0
answer = RunnableBranch(
(lambda x: has_docs(x), answer_with_docs),
answer_without_docs,
)
# ------- FINAL CHAIN
# Build the final chain
rag_chain = reformulation | keywords | find_documents | answer
return rag_chain
def make_rag_papers_chain(llm):
prompt = ChatPromptTemplate.from_template(papers_prompt_template)
input_documents = {
"context":lambda x : _combine_documents(x["docs"]),
**pass_values(["question","language"])
}
chain = input_documents | prompt | llm | StrOutputParser()
chain = rename_chain(chain,"answer")
return chain
def make_illustration_chain(llm):
prompt_with_images = ChatPromptTemplate.from_template(answer_prompt_images_template)
input_description_images = {
"images":lambda x : _combine_documents(get_image_docs(x["docs"])),
**pass_values(["question","audience","language","answer"]),
}
illustration_chain = input_description_images | prompt_with_images | llm | StrOutputParser()
return illustration_chain