|
from operator import itemgetter |
|
|
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, RunnableBranch |
|
from langchain_core.prompts.prompt import PromptTemplate |
|
from langchain_core.prompts.base import format_document |
|
|
|
from climateqa.engine.reformulation import make_reformulation_chain |
|
from climateqa.engine.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template |
|
from climateqa.engine.utils import pass_values, flatten_dict,prepare_chain,rename_chain |
|
|
|
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") |
|
|
|
def _combine_documents( |
|
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, sep="\n\n" |
|
): |
|
|
|
doc_strings = [] |
|
|
|
for i,doc in enumerate(docs): |
|
|
|
chunk_type = "Doc" |
|
doc_string = f"{chunk_type} {i+1}: " + format_document(doc, document_prompt) |
|
doc_string = doc_string.replace("\n"," ") |
|
doc_strings.append(doc_string) |
|
|
|
return sep.join(doc_strings) |
|
|
|
|
|
def get_text_docs(x): |
|
return [doc for doc in x if doc.metadata["chunk_type"] == "text"] |
|
|
|
def get_image_docs(x): |
|
return [doc for doc in x if doc.metadata["chunk_type"] == "image"] |
|
|
|
|
|
def make_rag_chain(retriever,llm): |
|
|
|
|
|
|
|
prompt = ChatPromptTemplate.from_template(answer_prompt_template) |
|
prompt_without_docs = ChatPromptTemplate.from_template(answer_prompt_without_docs_template) |
|
|
|
|
|
reformulation = make_reformulation_chain(llm) |
|
reformulation = prepare_chain(reformulation,"reformulation") |
|
|
|
|
|
|
|
find_documents = {"docs": itemgetter("question") | retriever} | RunnablePassthrough() |
|
find_documents = prepare_chain(find_documents,"find_documents") |
|
|
|
|
|
|
|
input_documents = { |
|
"context":lambda x : _combine_documents(x["docs"]), |
|
**pass_values(["question","audience","language"]) |
|
} |
|
|
|
|
|
|
|
llm_final = rename_chain(llm,"answer") |
|
|
|
answer_with_docs = { |
|
"answer": input_documents | prompt | llm_final | StrOutputParser(), |
|
**pass_values(["question","audience","language","query","docs"]), |
|
} |
|
|
|
answer_without_docs = { |
|
"answer": prompt_without_docs | llm_final | StrOutputParser(), |
|
**pass_values(["question","audience","language","query","docs"]), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def has_docs(x): |
|
return len(x["docs"]) > 0 |
|
|
|
answer = RunnableBranch( |
|
(lambda x: has_docs(x), answer_with_docs), |
|
answer_without_docs, |
|
) |
|
|
|
|
|
|
|
|
|
rag_chain = reformulation | find_documents | answer |
|
|
|
return rag_chain |
|
|
|
|
|
|
|
def make_illustration_chain(llm): |
|
|
|
prompt_with_images = ChatPromptTemplate.from_template(answer_prompt_images_template) |
|
|
|
input_description_images = { |
|
"images":lambda x : _combine_documents(get_image_docs(x["docs"])), |
|
**pass_values(["question","audience","language","answer"]), |
|
} |
|
|
|
illustration_chain = input_description_images | prompt_with_images | llm | StrOutputParser() |
|
return illustration_chain |