Added streamign
Browse files- app.py +91 -74
- climateqa/chains.py +9 -5
- climateqa/custom_retrieval_chain.py +63 -0
app.py
CHANGED
@@ -68,89 +68,77 @@ from langchain.callbacks.base import BaseCallbackHandler
|
|
68 |
from queue import Queue, Empty
|
69 |
from threading import Thread
|
70 |
from collections.abc import Generator
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
# Create a Queue
|
73 |
-
Q = Queue()
|
74 |
|
75 |
-
class QueueCallback(BaseCallbackHandler):
|
76 |
-
"""Callback handler for streaming LLM responses to a queue."""
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
self.q = q
|
80 |
|
81 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
self.q.put(token)
|
83 |
|
84 |
-
def on_llm_end(self,
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Create embeddings function and LLM
|
89 |
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
90 |
-
|
91 |
-
|
|
|
92 |
)
|
93 |
|
94 |
# Create vectorstore and retriever
|
95 |
vectorstore = get_pinecone_vectorstore(embeddings_function)
|
96 |
retriever = ClimateQARetriever(vectorstore=vectorstore,sources = ["IPCC"],k_summary = 3,k_total = 10)
|
97 |
-
chain = load_climateqa_chain(retriever,
|
98 |
|
99 |
|
100 |
#---------------------------------------------------------------------------
|
101 |
# ClimateQ&A Streaming
|
102 |
# From https://github.com/gradio-app/gradio/issues/5345
|
|
|
103 |
#---------------------------------------------------------------------------
|
104 |
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
Q.queue.clear()
|
111 |
-
job_done = object()
|
112 |
-
|
113 |
-
# Create a function to call - this will run in a thread
|
114 |
-
def task():
|
115 |
-
answer = chain({"query":input_text,"audience":"expert climate scientist"})
|
116 |
-
Q.put(job_done)
|
117 |
-
|
118 |
-
# Create a thread and start the function
|
119 |
-
t = Thread(target=task)
|
120 |
-
t.start()
|
121 |
-
|
122 |
-
content = ""
|
123 |
-
|
124 |
-
# Get each new token from the queue and yield for our generator
|
125 |
-
while True:
|
126 |
-
try:
|
127 |
-
next_token = Q.get(True, timeout=1)
|
128 |
-
if next_token is job_done:
|
129 |
-
break
|
130 |
-
content += next_token
|
131 |
-
yield next_token, content
|
132 |
-
except Empty:
|
133 |
-
continue
|
134 |
-
|
135 |
-
|
136 |
-
def stream_sentences(chain, input_text) -> Generator:
|
137 |
-
"""wrapper to stream function"""
|
138 |
-
sentence = ""
|
139 |
-
for next_token, content in stream(chain, input_text):
|
140 |
-
sentence += next_token
|
141 |
-
if "\n\n" in next_token:
|
142 |
-
yield sentence
|
143 |
-
sentence = ""
|
144 |
-
if sentence:
|
145 |
-
yield sentence
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
|
150 |
def answer_user(message,history):
|
151 |
return message, history + [[message, None]]
|
152 |
|
153 |
-
|
154 |
def answer_bot(message,history,audience):
|
155 |
|
156 |
if audience == "Children":
|
@@ -170,25 +158,39 @@ def answer_bot(message,history,audience):
|
|
170 |
# for next_token, content in stream(message):
|
171 |
# yield(content)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
sources = output["source_documents"]
|
176 |
-
|
177 |
-
if len(sources) > 0:
|
178 |
-
sources_text = []
|
179 |
-
for i, d in enumerate(sources, 1):
|
180 |
-
sources_text.append(make_html_source(d,i))
|
181 |
-
sources_text = "\n\n".join([f"Query used for retrieval:\n{question}"] + sources_text)
|
182 |
|
183 |
-
|
184 |
-
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
|
189 |
-
history[-1][1] = complete_response
|
190 |
-
return "",history, sources_text
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
#---------------------------------------------------------------------------
|
194 |
# ClimateQ&A core functions
|
@@ -348,7 +350,19 @@ def log_on_azure(file, logs, share_client):
|
|
348 |
# --------------------------------------------------------------------
|
349 |
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
|
354 |
with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
@@ -363,7 +377,9 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
363 |
with gr.Row(elem_id="chatbot-row"):
|
364 |
with gr.Column(scale=2):
|
365 |
# state = gr.State([system_template])
|
366 |
-
bot = gr.Chatbot(
|
|
|
|
|
367 |
|
368 |
with gr.Row(elem_id = "input-message"):
|
369 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7)
|
@@ -441,7 +457,6 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
441 |
examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
|
442 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
443 |
)
|
444 |
-
|
445 |
submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
446 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
447 |
)
|
@@ -619,6 +634,8 @@ Or around 2 to 4 times more than a typical Google search.
|
|
619 |
- ClimateQ&A on Hugging Face is finally working again with all the new features !
|
620 |
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
|
621 |
- Updated GPT model to August version
|
|
|
|
|
622 |
- Use of HuggingFace embed on https://climateqa.com to avoid demultiplying deployments
|
623 |
|
624 |
##### v1.0.0 - *2023-05-11*
|
|
|
68 |
from queue import Queue, Empty
|
69 |
from threading import Thread
|
70 |
from collections.abc import Generator
|
71 |
+
from langchain.schema import LLMResult
|
72 |
+
from typing import Any, Union,Dict,List
|
73 |
+
from queue import SimpleQueue
|
74 |
+
# # Create a Queue
|
75 |
+
# Q = Queue()
|
76 |
|
|
|
|
|
77 |
|
|
|
|
|
78 |
|
79 |
+
Q = SimpleQueue()
|
80 |
+
job_done = object() # signals the processing is done
|
81 |
+
|
82 |
+
class StreamingGradioCallbackHandler(BaseCallbackHandler):
|
83 |
+
def __init__(self, q: SimpleQueue):
|
84 |
self.q = q
|
85 |
|
86 |
+
def on_llm_start(
|
87 |
+
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
88 |
+
) -> None:
|
89 |
+
"""Run when LLM starts running. Clean the queue."""
|
90 |
+
while not self.q.empty():
|
91 |
+
try:
|
92 |
+
self.q.get(block=False)
|
93 |
+
except Empty:
|
94 |
+
continue
|
95 |
+
|
96 |
+
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
97 |
+
"""Run on new LLM token. Only available when streaming is enabled."""
|
98 |
self.q.put(token)
|
99 |
|
100 |
+
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
101 |
+
"""Run when LLM ends running."""
|
102 |
+
self.q.put(job_done)
|
103 |
+
|
104 |
+
def on_llm_error(
|
105 |
+
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
106 |
+
) -> None:
|
107 |
+
"""Run when LLM errors."""
|
108 |
+
self.q.put(job_done)
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
|
113 |
# Create embeddings function and LLM
|
114 |
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
115 |
+
llm_reformulation = get_llm(max_tokens = 512,temperature = 0.0,verbose = True,streaming = False)
|
116 |
+
llm_streaming = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = True,
|
117 |
+
callbacks=[StreamingGradioCallbackHandler(Q),StreamingStdOutCallbackHandler()],
|
118 |
)
|
119 |
|
120 |
# Create vectorstore and retriever
|
121 |
vectorstore = get_pinecone_vectorstore(embeddings_function)
|
122 |
retriever = ClimateQARetriever(vectorstore=vectorstore,sources = ["IPCC"],k_summary = 3,k_total = 10)
|
123 |
+
chain = load_climateqa_chain(retriever,llm_reformulation,llm_streaming)
|
124 |
|
125 |
|
126 |
#---------------------------------------------------------------------------
|
127 |
# ClimateQ&A Streaming
|
128 |
# From https://github.com/gradio-app/gradio/issues/5345
|
129 |
+
# And https://stackoverflow.com/questions/76057076/how-to-stream-agents-response-in-langchain
|
130 |
#---------------------------------------------------------------------------
|
131 |
|
132 |
+
from threading import Thread
|
133 |
|
134 |
+
def threaded_chain(query,audience):
|
135 |
+
response = chain({"query":query,"audience":audience})
|
136 |
+
Q.put(response)
|
137 |
+
Q.put(job_done)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
def answer_user(message,history):
|
140 |
return message, history + [[message, None]]
|
141 |
|
|
|
142 |
def answer_bot(message,history,audience):
|
143 |
|
144 |
if audience == "Children":
|
|
|
158 |
# for next_token, content in stream(message):
|
159 |
# yield(content)
|
160 |
|
161 |
+
thread = Thread(target=threaded_chain, kwargs={"query":message,"audience":audience_prompt})
|
162 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
history[-1][1] = ""
|
165 |
+
while True:
|
166 |
+
next_item = Q.get(block=True) # Blocks until an input is available
|
167 |
|
168 |
+
if next_item is job_done:
|
169 |
+
continue
|
|
|
|
|
|
|
170 |
|
171 |
+
elif isinstance(next_item, dict): # assuming LLMResult is a dictionary
|
172 |
+
response = next_item
|
173 |
+
if "source_documents" in response and len(response["source_documents"]) > 0:
|
174 |
+
sources_text = []
|
175 |
+
for i, d in enumerate(response["source_documents"], 1):
|
176 |
+
sources_text.append(make_html_source(d, i))
|
177 |
+
sources_text = "\n\n".join([f"Query used for retrieval:\n{response['question']}"] + sources_text)
|
178 |
+
# history[-1][1] += next_item["answer"]
|
179 |
+
# history[-1][1] += "\n\n" + sources_text
|
180 |
+
yield "", history, sources_text
|
181 |
+
|
182 |
+
else:
|
183 |
+
sources_text = "⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
|
184 |
+
complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
185 |
+
history[-1][1] += "\n\n" + complete_response
|
186 |
+
yield "", history, sources_text
|
187 |
+
break
|
188 |
+
|
189 |
+
elif isinstance(next_item, str):
|
190 |
+
history[-1][1] += next_item
|
191 |
+
yield "", history, ""
|
192 |
+
|
193 |
+
thread.join()
|
194 |
|
195 |
#---------------------------------------------------------------------------
|
196 |
# ClimateQ&A core functions
|
|
|
350 |
# --------------------------------------------------------------------
|
351 |
|
352 |
|
353 |
+
init_prompt = """
|
354 |
+
Hello ! I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.
|
355 |
+
|
356 |
+
💡 How to use
|
357 |
+
- **Language**: You can ask me your questions in any language.
|
358 |
+
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
|
359 |
+
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.
|
360 |
|
361 |
+
📚 Limitations
|
362 |
+
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
|
363 |
+
|
364 |
+
❓ What do you want to learn ?
|
365 |
+
"""
|
366 |
|
367 |
|
368 |
with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
|
377 |
with gr.Row(elem_id="chatbot-row"):
|
378 |
with gr.Column(scale=2):
|
379 |
# state = gr.State([system_template])
|
380 |
+
bot = gr.Chatbot(
|
381 |
+
value=[[None,init_prompt]],
|
382 |
+
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",avatar_images = ("assets/logo4.png",None))
|
383 |
|
384 |
with gr.Row(elem_id = "input-message"):
|
385 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7)
|
|
|
457 |
examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
|
458 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
459 |
)
|
|
|
460 |
submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
461 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
462 |
)
|
|
|
634 |
- ClimateQ&A on Hugging Face is finally working again with all the new features !
|
635 |
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
|
636 |
- Updated GPT model to August version
|
637 |
+
- Added streaming response to improve UX
|
638 |
+
- Created a custom Retriever chain to avoid calling the LLM if there is no documents retrieved
|
639 |
- Use of HuggingFace embed on https://climateqa.com to avoid demultiplying deployments
|
640 |
|
641 |
##### v1.0.0 - *2023-05-11*
|
climateqa/chains.py
CHANGED
@@ -8,7 +8,7 @@ from langchain.chains import TransformChain, SequentialChain
|
|
8 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
9 |
|
10 |
from climateqa.prompts import answer_prompt, reformulation_prompt,audience_prompts
|
11 |
-
|
12 |
|
13 |
def load_reformulation_chain(llm):
|
14 |
|
@@ -38,6 +38,7 @@ def load_reformulation_chain(llm):
|
|
38 |
|
39 |
|
40 |
|
|
|
41 |
def load_answer_chain(retriever,llm):
|
42 |
prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
|
43 |
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
|
@@ -45,24 +46,27 @@ def load_answer_chain(retriever,llm):
|
|
45 |
# This could be improved by providing a document prompt to avoid modifying page_content in the docs
|
46 |
# See here https://github.com/langchain-ai/langchain/issues/3523
|
47 |
|
48 |
-
answer_chain =
|
49 |
combine_documents_chain = qa_chain,
|
50 |
retriever=retriever,
|
51 |
return_source_documents = True,
|
|
|
|
|
52 |
)
|
53 |
return answer_chain
|
54 |
|
55 |
|
56 |
-
def load_climateqa_chain(retriever,
|
57 |
|
58 |
-
reformulation_chain = load_reformulation_chain(
|
59 |
-
answer_chain = load_answer_chain(retriever,
|
60 |
|
61 |
climateqa_chain = SequentialChain(
|
62 |
chains = [reformulation_chain,answer_chain],
|
63 |
input_variables=["query","audience"],
|
64 |
output_variables=["answer","question","language","source_documents"],
|
65 |
return_all = True,
|
|
|
66 |
)
|
67 |
return climateqa_chain
|
68 |
|
|
|
8 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
9 |
|
10 |
from climateqa.prompts import answer_prompt, reformulation_prompt,audience_prompts
|
11 |
+
from climateqa.custom_retrieval_chain import CustomRetrievalQAWithSourcesChain
|
12 |
|
13 |
def load_reformulation_chain(llm):
|
14 |
|
|
|
38 |
|
39 |
|
40 |
|
41 |
+
|
42 |
def load_answer_chain(retriever,llm):
|
43 |
prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
|
44 |
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
|
|
|
46 |
# This could be improved by providing a document prompt to avoid modifying page_content in the docs
|
47 |
# See here https://github.com/langchain-ai/langchain/issues/3523
|
48 |
|
49 |
+
answer_chain = CustomRetrievalQAWithSourcesChain(
|
50 |
combine_documents_chain = qa_chain,
|
51 |
retriever=retriever,
|
52 |
return_source_documents = True,
|
53 |
+
verbose = True,
|
54 |
+
fallback_answer="**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**",
|
55 |
)
|
56 |
return answer_chain
|
57 |
|
58 |
|
59 |
+
def load_climateqa_chain(retriever,llm_reformulation,llm_answer):
|
60 |
|
61 |
+
reformulation_chain = load_reformulation_chain(llm_reformulation)
|
62 |
+
answer_chain = load_answer_chain(retriever,llm_answer)
|
63 |
|
64 |
climateqa_chain = SequentialChain(
|
65 |
chains = [reformulation_chain,answer_chain],
|
66 |
input_variables=["query","audience"],
|
67 |
output_variables=["answer","question","language","source_documents"],
|
68 |
return_all = True,
|
69 |
+
verbose = True,
|
70 |
)
|
71 |
return climateqa_chain
|
72 |
|
climateqa/custom_retrieval_chain.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import inspect
|
3 |
+
from typing import Any, Dict, List, Optional
|
4 |
+
|
5 |
+
from pydantic import Extra
|
6 |
+
|
7 |
+
from langchain.schema.language_model import BaseLanguageModel
|
8 |
+
from langchain.callbacks.manager import (
|
9 |
+
AsyncCallbackManagerForChainRun,
|
10 |
+
CallbackManagerForChainRun,
|
11 |
+
)
|
12 |
+
from langchain.chains.base import Chain
|
13 |
+
from langchain.prompts.base import BasePromptTemplate
|
14 |
+
|
15 |
+
from typing import Any, Dict, List
|
16 |
+
|
17 |
+
from langchain.callbacks.manager import (
|
18 |
+
AsyncCallbackManagerForChainRun,
|
19 |
+
CallbackManagerForChainRun,
|
20 |
+
)
|
21 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
22 |
+
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
|
23 |
+
from langchain.docstore.document import Document
|
24 |
+
from langchain.pydantic_v1 import Field
|
25 |
+
from langchain.schema import BaseRetriever
|
26 |
+
|
27 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
28 |
+
|
29 |
+
|
30 |
+
from langchain.chains.router.llm_router import LLMRouterChain
|
31 |
+
|
32 |
+
class CustomRetrievalQAWithSourcesChain(RetrievalQAWithSourcesChain):
|
33 |
+
|
34 |
+
fallback_answer:str = "No sources available to answer this question."
|
35 |
+
|
36 |
+
def _call(self,inputs,run_manager=None):
|
37 |
+
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
38 |
+
accepts_run_manager = (
|
39 |
+
"run_manager" in inspect.signature(self._get_docs).parameters
|
40 |
+
)
|
41 |
+
if accepts_run_manager:
|
42 |
+
docs = self._get_docs(inputs, run_manager=_run_manager)
|
43 |
+
else:
|
44 |
+
docs = self._get_docs(inputs) # type: ignore[call-arg]
|
45 |
+
|
46 |
+
|
47 |
+
if len(docs) == 0:
|
48 |
+
answer = self.fallback_answer
|
49 |
+
sources = []
|
50 |
+
else:
|
51 |
+
|
52 |
+
answer = self.combine_documents_chain.run(
|
53 |
+
input_documents=docs, callbacks=_run_manager.get_child(), **inputs
|
54 |
+
)
|
55 |
+
answer, sources = self._split_sources(answer)
|
56 |
+
|
57 |
+
result: Dict[str, Any] = {
|
58 |
+
self.answer_key: answer,
|
59 |
+
self.sources_answer_key: sources,
|
60 |
+
}
|
61 |
+
if self.return_source_documents:
|
62 |
+
result["source_documents"] = docs
|
63 |
+
return result
|