from operator import itemgetter from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.base import format_document from climateqa.engine.chains.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template from climateqa.engine.chains.prompts import papers_prompt_template import time from ..utils import rename_chain, pass_values DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") def _combine_documents( docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, sep="\n\n" ): doc_strings = [] for i,doc in enumerate(docs): # chunk_type = "Doc" if doc.metadata["chunk_type"] == "text" else "Image" chunk_type = "Doc" if isinstance(doc,str): doc_formatted = doc else: doc_formatted = format_document(doc, document_prompt) doc_string = f"{chunk_type} {i+1}: " + doc_formatted doc_string = doc_string.replace("\n"," ") doc_strings.append(doc_string) return sep.join(doc_strings) def get_text_docs(x): return [doc for doc in x if doc.metadata["chunk_type"] == "text"] def get_image_docs(x): return [doc for doc in x if doc.metadata["chunk_type"] == "image"] def make_rag_chain(llm): prompt = ChatPromptTemplate.from_template(answer_prompt_template) chain = ({ "context":lambda x : _combine_documents(x["documents"]), "context_length":lambda x : print("CONTEXT LENGTH : " , len(_combine_documents(x["documents"]))), "query":itemgetter("query"), "language":itemgetter("language"), "audience":itemgetter("audience"), } | prompt | llm | StrOutputParser()) return chain def make_rag_chain_without_docs(llm): prompt = ChatPromptTemplate.from_template(answer_prompt_without_docs_template) chain = prompt | llm | StrOutputParser() return chain def make_rag_node(llm,with_docs = True): if with_docs: rag_chain = make_rag_chain(llm) else: rag_chain = make_rag_chain_without_docs(llm) async def answer_rag(state,config): print("---- Answer RAG ----") start_time = time.time() answer = await rag_chain.ainvoke(state,config) end_time = time.time() elapsed_time = end_time - start_time print("RAG elapsed time: ", elapsed_time) print("Answer size : ", len(answer)) # print(f"\n\nAnswer:\n{answer}") return {"answer":answer} return answer_rag def make_rag_papers_chain(llm): prompt = ChatPromptTemplate.from_template(papers_prompt_template) input_documents = { "context":lambda x : _combine_documents(x["docs"]), **pass_values(["question","language"]) } chain = input_documents | prompt | llm | StrOutputParser() chain = rename_chain(chain,"answer") return chain def make_illustration_chain(llm): prompt_with_images = ChatPromptTemplate.from_template(answer_prompt_images_template) input_description_images = { "images":lambda x : _combine_documents(get_image_docs(x["docs"])), **pass_values(["question","audience","language","answer"]), } illustration_chain = input_description_images | prompt_with_images | llm | StrOutputParser() return illustration_chain