Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import PyPDF2
|
5 |
+
import torch
|
6 |
+
from transformers import pipeline
|
7 |
+
import scipy
|
8 |
+
import numpy
|
9 |
+
from gtts import gTTS
|
10 |
+
from io import BytesIO
|
11 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
12 |
+
|
13 |
+
# Function to extract text from PDF
|
14 |
+
# Defines a function to extract raw text from a PDF file
|
15 |
+
def extract_text(pdf_file):
|
16 |
+
pdfReader = PyPDF2.PdfReader(pdf_file)
|
17 |
+
pageObj = pdfReader.pages[0]
|
18 |
+
return pageObj.extract_text()
|
19 |
+
|
20 |
+
|
21 |
+
# Function to summarize text
|
22 |
+
# Defines a function to summarize the extracted text using facebook/bart-large-cnn
|
23 |
+
def summarize_text(text):
|
24 |
+
sentences = text.split(". ")
|
25 |
+
for i, sentence in enumerate(sentences):
|
26 |
+
if "Abstract" in sentence:
|
27 |
+
start = i + 1
|
28 |
+
end = start + 6
|
29 |
+
break
|
30 |
+
abstract = ". ".join(sentences[start:end+1])
|
31 |
+
|
32 |
+
# Load BART model & tokenizer
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-base-book-summary")
|
34 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/led-base-book-summary")
|
35 |
+
|
36 |
+
# Tokenize abstract
|
37 |
+
inputs = tokenizer(abstract,
|
38 |
+
max_length=1024,
|
39 |
+
return_tensors="pt",
|
40 |
+
truncation=True)
|
41 |
+
|
42 |
+
# Generate summary
|
43 |
+
summary_ids = model.generate(inputs['input_ids'],
|
44 |
+
max_length=50,
|
45 |
+
min_length=30,
|
46 |
+
no_repeat_ngram_size=3,
|
47 |
+
encoder_no_repeat_ngram_size=3,
|
48 |
+
repetition_penalty=3.5,
|
49 |
+
num_beams=4,
|
50 |
+
do_sample=True,
|
51 |
+
early_stopping=False)
|
52 |
+
|
53 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
54 |
+
|
55 |
+
if '.' in summary:
|
56 |
+
index = summary.rindex('.')
|
57 |
+
if index != -1:
|
58 |
+
summary = summary[:index+1]
|
59 |
+
|
60 |
+
return summary
|
61 |
+
|
62 |
+
# Function to convert text to audio
|
63 |
+
# Defines a function to convert text to an audio file using Google Text-to-Speech
|
64 |
+
def text_to_audio(text):
|
65 |
+
tts = gTTS(text, lang='en')
|
66 |
+
buffer = BytesIO()
|
67 |
+
tts.write_to_fp(buffer)
|
68 |
+
buffer.seek(0)
|
69 |
+
return buffer.read()
|
70 |
+
|
71 |
+
### Main function
|
72 |
+
### The main function that ties everything together:
|
73 |
+
### extracts text, summarizes, and converts to audio.
|
74 |
+
def audio_pdf(pdf_file):
|
75 |
+
text = extract_text(pdf_file)
|
76 |
+
summary = summarize_text(text)
|
77 |
+
audio = text_to_audio(summary)
|
78 |
+
return summary, audio
|
79 |
+
|
80 |
+
# Define Gradio interface
|
81 |
+
# Gradio web interface with a file input, text output to display the summary
|
82 |
+
# and audio output to play the audio file. # Launches the interface
|
83 |
+
inputs = gr.File()
|
84 |
+
summary_text = gr.Text()
|
85 |
+
audio_summary = gr.Audio()
|
86 |
+
|
87 |
+
|
88 |
+
iface = gr.Interface(
|
89 |
+
fn=audio_pdf,
|
90 |
+
inputs=inputs,
|
91 |
+
outputs=[summary_text,audio_summary],
|
92 |
+
title="The Vocal PDF Summarizer",
|
93 |
+
description="I will summarize your pdf and transform it in to an audio",
|
94 |
+
examples=["Article 11 Hidden Technical Debt in Machine Learning Systems.pdf"
|
95 |
+
]
|
96 |
+
)
|
97 |
+
|
98 |
+
iface.launch() # Launch the interface
|