from interpreter import interpreter import streamlit as st output = interpreter.chat("hi, how are you") st.write(output) # import subprocess # def run_terminal_command(command): # try: # # Run the terminal command and capture its output # output = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) # return output.decode("utf-8") # Decode bytes to string # except subprocess.CalledProcessError as e: # # Handle errors if the command fails # return f"Error: {e.output.decode('utf-8')}" # # Example command: list files in the current directory # command = "ls" # output = run_terminal_command(command) # print(output) # import streamlit as st # import torch # from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler # from huggingface_hub import hf_hub_download # from safetensors.torch import load_file # # Model Path/Repo Information # base = "stabilityai/stable-diffusion-xl-base-1.0" # repo = "ByteDance/SDXL-Lightning" # ckpt = "sdxl_lightning_4step_unet.safetensors" # # Load model (Executed only once for efficiency) # @st.cache_resource # def load_sdxl_pipeline(): # unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float32) # unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu")) # pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float32, variant="fp16").to("cpu") # pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") # return pipe # # Streamlit UI # st.title("Image Generation") # prompt = st.text_input("Enter your image prompt:") # if st.button("Generate Image"): # if not prompt: # st.warning("Please enter a prompt.") # else: # pipe = load_sdxl_pipeline() # Load the pipeline from cache # with torch.no_grad(): # image = pipe(prompt).images[0] # st.image(image) # GOOGLE_API_KEY = "" # genai.configure(api_key=GOOGLE_API_KEY) # model = genai.GenerativeModel('gemini-pro') # def add_to_json(goal): # try: # with open("test.json", "r") as file: # data = json.load(file) # except FileNotFoundError: # data = {"goals": []} # Create the file with an empty 'goals' list if it doesn't exist # new_item = {"Goal": goal} # data["goals"].append(new_item) # with open("test.json", "w") as file: # json.dump(data, file, indent=4) # def main(): # if prompt := st.chat_input("Hi, how can I help you?"): # goals_prompt = f"""Act as a personal assistant... {prompt} """ # completion = model.generate_content(goals_prompt) # add_to_json(prompt) # with st.chat_message("Assistant"): # st.write(completion.text) # # Display JSON Data # if st.button("Show JSON Data"): # with open("test.json", "r") as file: # data = json.load(file) # st.json(data) # Streamlit's way to display JSON # if __name__ == "__main__": # main()