File size: 3,208 Bytes
2694503
b65b755
2694503
80c53a2
9f1e952
b3630c7
f70d981
2694503
c532af7
0612568
2cdf215
 
 
 
 
5d8c89a
 
 
0612568
2cdf215
ce2abbe
 
 
2ac511b
43c14e0
f24a592
 
b3630c7
 
f24a592
43c14e0
b65b755
 
 
 
 
2ac511b
825d9d7
b65b755
 
 
 
 
 
 
 
 
 
2ac511b
b3630c7
b65b755
 
2ac511b
b65b755
2ac511b
b65b755
1c96088
b3630c7
1c96088
 
 
e4c6668
1c96088
b65b755
 
 
 
d945551
ce2abbe
 
2694503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import gradio as gr
from groq import Groq
from dotenv import load_dotenv
import json
from deep_translator import GoogleTranslator
load_dotenv()

api1 = os.getenv("GROQ_API_KEY")
api2 = os.getenv("Groq_key")
api3 = os.getenv("GRoq_key")
# api2 = os.getenv("Groq_key")
# api2 = os.getenv("Groq_key")
# api2 = os.getenv("Groq_key")
# api2 = os.getenv("Groq_key")

apis = [
    api1,
    api2,
    api3,
]


def make_call(data):
    print(data)
    newdata = data.replace("'", '"')
    items = json.loads(newdata)
    language = items['lang']
    query = items['text']
    query = query.lower()
    answer = None
    while True:
        for api in apis:
            client = Groq(
                    api_key=api,
                )  # Configure the model with the API key
            # query = st.text_input("Enter your query")
            prmptquery= f"Answer this query in a short message with wisdom, love and compassion, in context to bhagwat geeta, that feels like chatting to a person and provide references of shloks from chapters of bhagwat geeta which is relevant to the query. keep the answer short, precise and simple. Query= {query}"
            try:
                response = client.chat.completions.create(
                messages=[
                    {
                        "role": "user",
                        "content": prmptquery,
                    }
                ],
                model="mixtral-8x7b-32768",
                )
                answer = response.choices[0].message.content
                translated = GoogleTranslator(source='auto', target=language).translate(answer)
            except Exception as e:
                print(f"API call failed for: {e}")
            if answer:
                break
        if answer:
                break
    respo = {
                "message": translated,
                "action": "nothing",
                "function": "nothing",
            }
    print(translated)
    return json.dumps(respo)



gradio_interface = gr.Interface(fn=make_call, inputs="text", outputs="text")
gradio_interface.launch()

# print(chat_completion)

























# # Text to 3D

# import streamlit as st
# import torch
# from diffusers import ShapEPipeline
# from diffusers.utils import export_to_gif

# # Model loading (Ideally done once at the start for efficiency)
# ckpt_id = "openai/shap-e"  
# @st.cache_resource  # Caches the model for faster subsequent runs
# def load_model():
#     return ShapEPipeline.from_pretrained(ckpt_id).to("cuda")  

# pipe = load_model()

# # App Title
# st.title("Shark 3D Image Generator")

# # User Inputs
# prompt = st.text_input("Enter your prompt:", "a shark")
# guidance_scale = st.slider("Guidance Scale", 0.0, 20.0, 15.0, step=0.5)

# # Generate and Display Images
# if st.button("Generate"):
#     with st.spinner("Generating images..."):
#         images = pipe(
#             prompt,
#             guidance_scale=guidance_scale,
#             num_inference_steps=64,
#             size=256,
#         ).images
#         gif_path = export_to_gif(images, "shark_3d.gif")

#         st.image(images[0])  # Display the first image
#         st.success("GIF saved as shark_3d.gif")