File size: 854 Bytes
ad238e8 0f28037 e936e9a bd0a6b5 fd6e0d0 41b8529 bd0a6b5 e936e9a bd0a6b5 e936e9a d48119b e936e9a 891058f bd0a6b5 e936e9a 68d0718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import streamlit as st
from transformers import pipeline
pipe1 = pipeline("text-classification", model="Emma0123/fine_tuned_model")
pipe2 = pipeline("text-classification", model="jonas/roberta-base-finetuned-sdg")
st.title("ESG with HuggingFace Spaces")
st.write("Enter a sentence to analyze its ESG")
input_text =st.text_input("")
# 使用第一个模型进行预测
result1 = pipe1(input_text)
# 判断第一个模型的输出结果
if result1[0]['label'] == 'environmental': # 根据您的模型实际返回的标签进行修改
result2 = pipe2(input_text)
st.write(f"The model predicts this text to be related to category '{result2['label']}' with a confidence score of {result2['score']:.2%}.")
else:
# 如果输出结果为0(或者对应的标签),打印提示信息
st.write("This content is unrelated to Environment.")
|