File size: 775 Bytes
1ca0af5
ad238e8
e936e9a
 
bd0a6b5
e936e9a
 
bd0a6b5
e936e9a
 
bd0a6b5
e936e9a
 
 
 
 
bd0a6b5
e936e9a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from transformers import pipeline
import streamlit as st
pipe1 = pipeline("text-classification", model="Emma0123/fine_tuned_model")
pipe2 = pipeline("text-classification", model="jonas/roberta-base-finetuned-sdg")

# 获取用户输入的文本
input_text = input("Please enter the text: ")

# 使用第一个模型进行预测
result1 = pipe1(input_text)

# 判断第一个模型的输出结果
if result1[0]['label'] == 'LABEL_1':  # 根据您的模型实际返回的标签进行修改
    # 如果输出结果为1(或者对应的标签),将输入文本传递给第二个模型
    result2 = pipe2(input_text)
    print(result2)
else:
    # 如果输出结果为0(或者对应的标签),打印提示信息
    print("This content is unrelated to Environment.")