import streamlit as st | |
from transformers import pipeline | |
pipe1 = pipeline("text-classification", model="Emma0123/fine_tuned_model") | |
pipe2 = pipeline("text-classification", model="jonas/roberta-base-finetuned-sdg") | |
st.title("ESG with HuggingFace Spaces") | |
st.write("Enter a sentence to analyze its ESG") | |
user_input =st.text_input("") | |
# 使用第一个模型进行预测 | |
result1 = pipe1(input_text) | |
# 判断第一个模型的输出结果 | |
if result1[0]['label'] == 'LABEL_1': # 根据您的模型实际返回的标签进行修改 | |
# 如果输出结果为1(或者对应的标签),将输入文本传递给第二个模型 | |
result2 = pipe2(input_text) | |
print(result2) | |
else: | |
# 如果输出结果为0(或者对应的标签),打印提示信息 | |
print("This content is unrelated to Environment.") | |