pipe1 = pipeline("text-classification", model="Emma0123/fine_tuned_model") pipe2 = pipeline("text-classification", model="jonas/roberta-base-finetuned-sdg") # 获取用户输入的文本 input_text = input("Please enter the text: ") # 使用第一个模型进行预测 result1 = pipe1(input_text) # 判断第一个模型的输出结果 if result1[0]['label'] == 'LABEL_1': # 根据您的模型实际返回的标签进行修改 # 如果输出结果为1(或者对应的标签),将输入文本传递给第二个模型 result2 = pipe2(input_text) print(result2) else: # 如果输出结果为0(或者对应的标签),打印提示信息 print("This content is unrelated to Environment.")