File size: 9,225 Bytes
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import einops
from einops.layers.torch import Rearrange


def normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)

def swish(x):
    return x*torch.sigmoid(x)

class ResBlock(nn.Module):
    def __init__(self, in_channels, out_channels=None, activation_fn="relu"):
        super(ResBlock, self).__init__()
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels
        self.norm1 = normalize(in_channels)
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.norm2 = normalize(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        if self.in_channels != self.out_channels:
            self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
        self.activation_fn = activation_fn
        if activation_fn=="relu":
            self.actn = nn.ReLU()


    def forward(self, x_in):
        x = x_in
        x = self.norm1(x)
        if self.activation_fn=="relu":
            x = self.actn(x)
        elif self.activation_fn=="swish":
            x = swish(x)
        x = self.conv1(x)
        x = self.norm2(x)
        if self.activation_fn=="relu":
            x = self.actn(x)
        elif self.activation_fn=="swish":
            x = swish(x)
        x = self.conv2(x)
        if self.in_channels != self.out_channels:
            x_in = self.conv_out(x_in)

        return x + x_in

class Encoder(nn.Module):
    def __init__(self, ):
        super().__init__()

        self.filters = 128
        self.num_res_blocks =  2
        self.ch_mult = [1,1,2,2,4]
        self.in_ch_mult = (1,)+tuple(self.ch_mult)
        self.embedding_dim = 32
        self.conv_downsample =  False

        self.conv1 = nn.Conv2d(3, 128, kernel_size=3, stride=1, padding=1, bias=False)
        blocks = []
        for i in range(len(self.ch_mult)):
            block_in_ch = self.filters  * self.in_ch_mult[i]
            block_out_ch = self.filters  * self.ch_mult[i]
            for _ in range(self.num_res_blocks):
                blocks.append(ResBlock(block_in_ch, block_out_ch, activation_fn="swish"))
                block_in_ch = block_out_ch
        for _ in range(self.num_res_blocks):
            blocks.append(ResBlock(block_in_ch, block_out_ch, activation_fn="swish"))
        self.norm1 = normalize(block_in_ch)
        self.conv2 = nn.Conv2d(block_in_ch, self.embedding_dim, kernel_size=1, stride=1, padding=0)
        self.blocks = nn.ModuleList(blocks)

    def forward(self, x):
        x = self.conv1(x)
        for i in range(len(self.ch_mult)):
            for j in range(self.num_res_blocks):
                x = self.blocks[i*2+j](x)

            if i < len(self.ch_mult) -1:
                x = torch.nn.functional.avg_pool2d(x, (2,2),(2,2))

        x = self.blocks[-2](x)
        x = self.blocks[-1](x)

        x = self.norm1(x)
        x = swish(x)
        x = self.conv2(x)
        return x

class VectorQuantizer(nn.Module):
    def __init__(self, codebook_size=8192, emb_dim=32, beta=None):
        super(VectorQuantizer, self).__init__()
        self.codebook_size = codebook_size  # number of embeddings
        self.emb_dim = emb_dim  # dimension of embedding
        self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
        self.beta=0.0
        self.z_dim = emb_dim

    def forward(self, z):
        # preprocess

        b, c, h, w = z.size()
        flatten = z.permute(0, 2, 3, 1).reshape(-1, c)
        codebook = self.embedding.weight
        with torch.no_grad():
            tokens = torch.cdist(flatten, codebook).argmin(dim=1)
        quantized = F.embedding(tokens,
                                codebook).view(b, h, w, c).permute(0, 3, 1, 2)

        # compute loss
        codebook_loss = F.mse_loss(quantized, z.detach())
        commitment_loss = F.mse_loss(quantized.detach(), z)
        loss = codebook_loss + self.beta * commitment_loss

        # perplexity
        counts = F.one_hot(tokens, self.codebook_size).sum(dim=0).to(z.dtype)
        # dist.all_reduce(counts)
        p = counts / counts.sum()
        perplexity = torch.exp(-torch.sum(p * torch.log(p + 1e-10)))

        # postprocess
        tokens = tokens.view(b, h, w)
        quantized = z + (quantized - z).detach()

        # quantized_2 = self.get_codebook_feat(tokens, (b, h, w, c))

        return quantized, tokens, loss, perplexity


    def get_codebook_feat(self, indices, shape=None):
        # input indices: batch*token_num -> (batch*token_num)*1
        # shape: batch, height, width, channel
        indices = indices.view(-1,1)
        min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
        min_encodings.scatter_(1, indices, 1)
        # get quantized latent vectors
        z_q = torch.matmul(min_encodings.float(), self.embedding.weight)

        if shape is not None:  # reshape back to match original input shape
            z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()

        return z_q


class Decoder(nn.Module):
    def __init__(self,):
        super().__init__()
        self.filters = 128
        self.num_res_blocks =  2
        self.ch_mult = [1,1,2,2,4]
        self.in_ch_mult = (1,)+tuple(self.ch_mult)
        self.embedding_dim =32
        self.out_channels = 3
        self.in_channels = self.embedding_dim
        self.conv_downsample =  False

        self.conv1 = nn.Conv2d(32, 512, kernel_size=3, stride=1, padding=1)
        blocks = []
        block_in_ch = self.filters * self.ch_mult[-1]
        block_out_ch = self.filters * self.ch_mult[-1]
        #blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
        for _ in range(self.num_res_blocks):
            blocks.append(ResBlock(block_in_ch, block_out_ch, activation_fn="swish"))
        upsample_conv_layers = []
        for i in reversed(range(len(self.ch_mult))):
            block_out_ch = self.filters * self.ch_mult[i]
            for _ in range(self.num_res_blocks):
                blocks.append(ResBlock(block_in_ch, block_out_ch, activation_fn="swish"))
                block_in_ch = block_out_ch
            if i > 0:
                upsample_conv_layers.append(nn.Conv2d(block_in_ch, block_out_ch*4, kernel_size=3, stride=1, padding=1))

        self.upsample = Rearrange("b h w (h2 w2 c) -> b (h h2) (w w2) c", h2=2, w2=2)
        self.norm1 = normalize(block_in_ch)
        # self.act_fn
        self.conv6 = nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)
        self.blocks = nn.ModuleList(blocks)
        self.up_convs = nn.ModuleList(upsample_conv_layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.blocks[0](x)
        x = self.blocks[1](x)
        for i in range(len(self.ch_mult)):
            for j in range(self.num_res_blocks):
                x = self.blocks[2+i*2+j](x)
            if i < len(self.ch_mult)-1:
                x = self.up_convs[i](x)
                #print("pre: x.size()",x.size())
                x = x.permute(0,2,3,1)
                x = self.upsample(x)
                x = x.permute(0,3,1,2)
                #print("post: x.size()", x.size())
        x = self.norm1(x)
        x = swish(x)
        x = self.conv6(x)
        return x


class VQVAE(nn.Module):
    def __init__(self, ):
        super().__init__()
        self.encoder = Encoder()
        self.quantizer = VectorQuantizer()
        self.decoder = Decoder()

    def forward(self, x):
        x = self.encoder(x)
        quant,tokens, loss, perplexity = self.quantizer(x)
        x = self.decoder(quant)
        return x

    def tokenize(self, x):
        batch_shape = x.shape[:-3]
        x = x.reshape(-1, *x.shape[-3:])
        x = self.encoder(x)
        quant,tokens, loss, perplexity = self.quantizer(x)
        return tokens.reshape(*batch_shape, *tokens.shape[1:])

    def decode(self, tokens):
        tokens = einops.rearrange(tokens, 'b ... -> b (...)')
        b = tokens.shape[0]
        if tokens.shape[-1] == 256:
            hw = 16
        elif tokens.shape[-1] == 224:
            hw = 14
        else:
            raise ValueError("Invalid tokens shape")
        quant = self.quantizer.get_codebook_feat(tokens, (b, hw, hw, 32))
        x = self.decoder(quant)
        return x


class VAEDecoder(nn.Module):
    def __init__(self, ):
        super().__init__()
        self.quantizer = VectorQuantizer()
        self.decoder = Decoder()

    def forward(self, x):
        quant = self.quantizer.get_codebook_feat(x,(1,14,14,32))
        x = self.decoder(quant)
        return x


def get_tokenizer():
    checkpoint_path = os.path.join(
        os.path.dirname(os.path.realpath(__file__)), "xh_ckpt.pth"
    )
    torch_state_dict = torch.load(checkpoint_path)
    net = VQVAE()
    net.load_state_dict(torch_state_dict)
    return net