Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,718 Bytes
a858bb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
"""
Batch generation for sequnce of images. This script accept a jsonl file
as input. Each line of the jsonl file representing a dictionary. Each line
represents one example in the evaluation set. The dictionary should have two key:
input: a list of paths to the input images as context to the model.
output: a string representing the path to the output of generation to be saved.
Ths script runs the mode to generate the output images, and concatenate the
input and output images together and save them to the output path.
"""
import os
import json
from PIL import Image
import numpy as np
import mlxu
from tqdm import tqdm, trange
from multiprocessing import Pool
import einops
import torch
from .inference import MultiProcessInferenceModel
from .utils import read_image_to_tensor, MultiProcessImageSaver
FLAGS, _ = mlxu.define_flags_with_default(
input_file='',
checkpoint='',
input_base_dir='',
output_base_dir='',
evaluate_mse=False,
json_input_key='input',
json_output_key='output',
json_target_key='target',
n_new_frames=1,
n_candidates=2,
context_frames=16,
temperature=1.0,
top_p=1.0,
n_workers=8,
dtype='float16',
torch_devices='',
batch_size_factor=4,
max_examples=0,
resize_output='',
include_input=False,
)
# create this according to the json file.
class MultiFrameDataset(torch.utils.data.Dataset):
def __init__(self, input_files, output_files, target_files=None):
assert len(input_files)
self.input_files = input_files
self.output_files = output_files
self.target_files = target_files
def __len__(self):
return len(self.input_files)
def __getitem__(self, idx):
original_size = Image.open(self.input_files[idx][-1]).size
input_images = np.stack(
[read_image_to_tensor(f) for f in self.input_files[idx]],
axis=0
)
if self.target_files is not None:
target_images = np.stack(
[read_image_to_tensor(f) for f in self.target_files[idx]],
axis=0
)
else:
target_images = None
return input_images, target_images, self.output_files[idx], np.array(original_size)
def main(_):
assert FLAGS.checkpoint != ''
print(f'Loading checkpoint from {FLAGS.checkpoint}')
print(f'Evaluating input file from {FLAGS.input_file}')
# build a model.
model = MultiProcessInferenceModel(
checkpoint=FLAGS.checkpoint,
torch_devices=FLAGS.torch_devices,
dtype=FLAGS.dtype,
context_frames=FLAGS.context_frames,
use_lock=True,
)
# input_files: the json file that needs to be generated by the other file.
input_files = []
output_files = []
if FLAGS.evaluate_mse:
target_files = []
else:
target_files = None
with mlxu.open_file(FLAGS.input_file, 'r') as f:
for line in f:
record = json.loads(line)
input_files.append(record[FLAGS.json_input_key])
output_files.append(record[FLAGS.json_output_key])
if FLAGS.evaluate_mse:
target_files.append(record[FLAGS.json_target_key])
if FLAGS.max_examples > 0:
input_files = input_files[:FLAGS.max_examples]
output_files = output_files[:FLAGS.max_examples]
if FLAGS.evaluate_mse:
target_files = target_files[:FLAGS.max_examples]
if FLAGS.input_base_dir != '':
input_files = [
[os.path.join(FLAGS.input_base_dir, x) for x in y]
for y in input_files
]
if FLAGS.evaluate_mse:
target_files = [
[os.path.join(FLAGS.input_base_dir, x) for x in y]
for y in target_files
]
if FLAGS.output_base_dir != '':
os.makedirs(FLAGS.output_base_dir, exist_ok=True)
output_files = [
os.path.join(FLAGS.output_base_dir, x)
for x in output_files
]
dataset = MultiFrameDataset(input_files, output_files, target_files)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=FLAGS.batch_size_factor * model.n_processes,
shuffle=False,
num_workers=FLAGS.n_workers,
)
image_saver = MultiProcessImageSaver(FLAGS.n_workers)
mses = []
for batch_images, batch_targets, batch_output_files, batch_sizes in tqdm(data_loader, ncols=0):
# batch_images is input.
batch_images = batch_images.numpy()
#
context_length = batch_images.shape[1]
generated_images = model(
batch_images,
FLAGS.n_new_frames,
FLAGS.n_candidates,
temperature=FLAGS.temperature,
top_p=FLAGS.top_p
)
repeated_batch = einops.repeat(
batch_images,
'b s h w c -> b n s h w c',
n=FLAGS.n_candidates,
)
generated_images = np.array(generated_images)
if FLAGS.evaluate_mse:
batch_targets = einops.repeat(
batch_targets.numpy(),
'b s h w c -> b n s h w c', # batch, candidate, s
n=FLAGS.n_candidates,
)
channels = batch_targets.shape[-1]
# calculate mse loss.
mse = np.mean((generated_images - batch_targets) ** 2, axis=(1, 2, 3, 4, 5))
mses.append(mse * channels)
if FLAGS.include_input:
combined = einops.rearrange(
np.concatenate([repeated_batch, generated_images], axis=2),
'b n s h w c -> b (n h) (s w) c'
)
else:
combined = einops.rearrange(
generated_images,
'b n s h w c -> b (n h) (s w) c'
)
combined = (combined * 255).astype(np.uint8)
n_frames = FLAGS.n_new_frames
if FLAGS.include_input:
n_frames += context_length
if FLAGS.resize_output == '':
resizes = None
elif FLAGS.resize_output == 'original':
resizes = batch_sizes.numpy()
resizes = resizes * np.array([[n_frames, FLAGS.n_candidates]])
else:
resize = tuple(int(x) for x in FLAGS.resize_output.split(','))
resizes = np.array([resize] * len(batch_sizes))
resizes = resizes * np.array([[n_frames, FLAGS.n_candidates]])
image_saver(combined, batch_output_files, resizes)
if FLAGS.evaluate_mse:
mses = np.concatenate(mses, axis=0)
print(f'MSE: {np.mean(mses)}')
image_saver.close()
if __name__ == "__main__":
mlxu.run(main) |