File size: 9,293 Bytes
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from abc import ABC, abstractmethod
from contextlib import nullcontext
import time
import os
from functools import partial
from copy import deepcopy
from multiprocessing import Pool
from threading import Lock
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
import einops
from transformers import LlamaForCausalLM
import spaces

from vqvae_muse import VQGANModel, get_tokenizer_muse
from torch_vqvae_model import get_tokenizer


def get_torch_float_dtype(dtype):
    if dtype in (torch.float16, torch.bfloat16, torch.float32):
        return dtype
    return {
        'float16': torch.float16,
        'fp16': torch.float16,
        'f16': torch.float16,
        'bfloat16': torch.bfloat16,
        'bf16': torch.bfloat16,
        'float32': torch.float32,
        'fp32': torch.float32,
        'f32': torch.float32,
    }[dtype]


def get_pid():
    time.sleep(1)
    return os.getpid()


class InferenceModel(ABC):

    @abstractmethod
    def __call__(input_images, n_new_frames, n_candidates, temperature=1.0, top_p=1.0):
        raise NotImplementedError()


class LocalInferenceModel(InferenceModel):

    def __init__(self, checkpoint, dtype='float16', torch_device='cuda',
                 context_frames=16, use_lock=False):
        self.checkpoint = checkpoint
        self.dtype = dtype
        self.torch_device = torch_device
        self.context_frames = context_frames

        # new tokenizer
        self.tokenizer = get_tokenizer_muse()
        self.tokenizer.to(self.torch_device)

        self.model = LlamaForCausalLM.from_pretrained(
            self.checkpoint, torch_dtype=get_torch_float_dtype(self.dtype)
        ).to(self.torch_device)
        print("torch device", self.torch_device)
        print("init device", self.model.device)

        if use_lock:
            self.lock = Lock()
        else:
            self.lock = nullcontext()

    @torch.no_grad()
    def compute_perplexity(self, input_images, target_images):
        input_images = np.array(input_images)
        target_images = np.array(target_images)
        assert len(input_images.shape) == 5 and len(target_images.shape) == 5  # [B, S, H, W, C]
        assert input_images.shape[0] == target_images.shape[0]
        batch_size = input_images.shape[0]
        with self.lock:
            input_images = torch.tensor(
                einops.rearrange(input_images, 'b s h w c -> b s c h w')
            ).to(self.torch_device)
            target_images = torch.tensor(
                einops.rearrange(target_images, 'b s h w c -> b s c h w')
            ).to(self.torch_device)
            input_ids = self.tokenizer.tokenize(input_images).view(batch_size, -1)
            target_ids = self.tokenizer.tokenize(target_images).view(batch_size, -1)
            all_ids = torch.cat([input_ids, target_ids], dim=1)
            logits = self.model(all_ids).logits
            log_probs = F.log_softmax(logits, dim=-1)
            target_ids_onehot = F.one_hot(target_ids, num_classes=logits.shape[-1])
            target_log_probs = log_probs[:, input_ids.shape[1] - 1 : -1]
            perplexity = torch.exp(
                -torch.mean(
                    torch.sum(target_log_probs * target_ids_onehot, dim=-1),
                    dim=-1
                )
            )
            return perplexity.detach().cpu().numpy()

    @torch.no_grad()
    def generate_once(self, input_images, n_new_frames, temperature=1.0, top_p=1.0):
        assert type(input_images) == np.ndarray
        with self.lock:
            input_images = np.array(input_images, dtype=np.float32)
            input_images = torch.tensor(
                einops.rearrange(input_images, 'b h w c -> b c h w')
            ).to(self.torch_device)

            # not quite sure why i need to redo it here
            self.model.to(self.torch_device)
            self.tokenizer.to(self.torch_device)

            # new tokenizer
            _, input_ids = self.tokenizer.encode(input_images)
            input_ids = input_ids.view(1, -1)


            input_ids = input_ids[:, -(self.context_frames - 1) * 256:]

            new_tokens = []
            current_context_frames = input_ids.shape[1] // 256
            fisrt_generation_left = self.context_frames - current_context_frames
            first_new_frames = min(fisrt_generation_left, n_new_frames)
            input_ids = self.model.generate(
                input_ids=input_ids,
                attention_mask=torch.ones_like(input_ids),
                pad_token_id=8192,
                max_new_tokens=256 * first_new_frames,
                do_sample=True,
                top_p=top_p,
                temperature=temperature,
                suppress_tokens=list(range(8192, self.model.vocab_size)),
            )
            new_tokens.append(input_ids[:, -256 * first_new_frames:])
            input_ids = input_ids[:, -(self.context_frames - 1) * 256:]

            for _ in range(max(0, n_new_frames - first_new_frames)):
                input_ids = self.model.generate(
                    input_ids=input_ids,
                    attention_mask=torch.ones_like(input_ids),
                    pad_token_id=8192,
                    max_new_tokens=256,
                    do_sample=True,
                    top_p=top_p,
                    temperature=temperature,
                    suppress_tokens=list(range(8192, self.model.vocab_size)),
                )
                new_tokens.append(input_ids[:, -256:])
                input_ids = input_ids[:, -(self.context_frames - 1) * 256:]

            new_tokens = torch.cat(new_tokens, dim=1).view(-1, 256)
            new_images = einops.rearrange(
                torch.clamp(self.tokenizer.decode_code(new_tokens), 0.0, 1.0),
                'b c h w -> b h w c'
            ).detach().cpu().numpy()
        return new_images

    @spaces.GPU(duration=180)
    def __call__(self, input_images, n_new_frames, n_candidates, temperature=1.0, top_p=1.0):
        output = []
        for seq in input_images:
            output.append(
                [self.generate_once(seq, n_new_frames, temperature, top_p)
                 for _ in range(n_candidates)]
            )
        return output


class MultiProcessInferenceModel(InferenceModel):

    def __init__(self, checkpoint, torch_devices=None, dtype='float16',
                 context_frames=16, use_lock=False, perplexity_batch_size=2):
        if torch_devices is None or torch_devices == '':
            torch_devices = [f'cuda:{i}' for i in range(torch.cuda.device_count())]

        self.torch_devices = torch_devices
        self.n_processes = len(torch_devices)
        print(f'Using {self.n_processes} processes for inference')
        self.worker_pool = Pool(self.n_processes)
        self.worker_pids = self.worker_pool.starmap(get_pid, [tuple() for _ in range(self.n_processes)])
        self.device_map = {
            pid: torch_device
            for pid, torch_device in zip(self.worker_pids, self.torch_devices)
        }
        self.worker_pool.starmap(
            self.initialize_worker,
            [(self.device_map, checkpoint, dtype, context_frames) for _ in range(self.n_processes)]
        )
        self.perplexity_batch_size = perplexity_batch_size
        if use_lock:
            self.lock = Lock()
        else:
            self.lock = nullcontext()

    @staticmethod
    def initialize_worker(device_map, checkpoint, dtype, context_frames):
        global _current_process_backend
        torch_device = device_map[os.getpid()]
        _current_process_backend = LocalInferenceModel(
            checkpoint, dtype, torch_device, context_frames
        )

    @staticmethod
    def generate_once(input_images, n_new_frames, temperature=1.0, top_p=1.0):
        return _current_process_backend.generate_once(input_images, n_new_frames, temperature, top_p)

    @staticmethod
    def compute_perplexity_once(input_images, target_images):
        return _current_process_backend.compute_perplexity(input_images, target_images)

    def compute_perplexity(self, input_images, target_images):
        with self.lock:
            map_args = []
            for i in range(0, len(input_images), self.perplexity_batch_size):
                map_args.append((
                    input_images[i : i + self.perplexity_batch_size],
                    target_images[i : i + self.perplexity_batch_size]
                ))
            outputs = self.worker_pool.starmap(self.compute_perplexity_once, map_args)
            return np.concatenate(outputs, axis=0)

    def __call__(self, input_images, n_new_frames, n_candidates, temperature=1.0, top_p=1.0):
        with self.lock:
            map_args = []
            for seq in input_images:
                for _ in range(n_candidates):
                    map_args.append((seq, n_new_frames, temperature, top_p))

            outputs = self.worker_pool.starmap(self.generate_once, map_args)
            reshaped_output = []
            index = 0
            for _ in range(len(input_images)):
                candidates = []
                for _ in range(n_candidates):
                    candidates.append(outputs[index])
                    index += 1
                reshaped_output.append(candidates)
        return reshaped_output