LVM / batch_generation.py
Emma02's picture
Add application file
a858bb2
raw
history blame
6.72 kB
"""
Batch generation for sequnce of images. This script accept a jsonl file
as input. Each line of the jsonl file representing a dictionary. Each line
represents one example in the evaluation set. The dictionary should have two key:
input: a list of paths to the input images as context to the model.
output: a string representing the path to the output of generation to be saved.
Ths script runs the mode to generate the output images, and concatenate the
input and output images together and save them to the output path.
"""
import os
import json
from PIL import Image
import numpy as np
import mlxu
from tqdm import tqdm, trange
from multiprocessing import Pool
import einops
import torch
from .inference import MultiProcessInferenceModel
from .utils import read_image_to_tensor, MultiProcessImageSaver
FLAGS, _ = mlxu.define_flags_with_default(
input_file='',
checkpoint='',
input_base_dir='',
output_base_dir='',
evaluate_mse=False,
json_input_key='input',
json_output_key='output',
json_target_key='target',
n_new_frames=1,
n_candidates=2,
context_frames=16,
temperature=1.0,
top_p=1.0,
n_workers=8,
dtype='float16',
torch_devices='',
batch_size_factor=4,
max_examples=0,
resize_output='',
include_input=False,
)
# create this according to the json file.
class MultiFrameDataset(torch.utils.data.Dataset):
def __init__(self, input_files, output_files, target_files=None):
assert len(input_files)
self.input_files = input_files
self.output_files = output_files
self.target_files = target_files
def __len__(self):
return len(self.input_files)
def __getitem__(self, idx):
original_size = Image.open(self.input_files[idx][-1]).size
input_images = np.stack(
[read_image_to_tensor(f) for f in self.input_files[idx]],
axis=0
)
if self.target_files is not None:
target_images = np.stack(
[read_image_to_tensor(f) for f in self.target_files[idx]],
axis=0
)
else:
target_images = None
return input_images, target_images, self.output_files[idx], np.array(original_size)
def main(_):
assert FLAGS.checkpoint != ''
print(f'Loading checkpoint from {FLAGS.checkpoint}')
print(f'Evaluating input file from {FLAGS.input_file}')
# build a model.
model = MultiProcessInferenceModel(
checkpoint=FLAGS.checkpoint,
torch_devices=FLAGS.torch_devices,
dtype=FLAGS.dtype,
context_frames=FLAGS.context_frames,
use_lock=True,
)
# input_files: the json file that needs to be generated by the other file.
input_files = []
output_files = []
if FLAGS.evaluate_mse:
target_files = []
else:
target_files = None
with mlxu.open_file(FLAGS.input_file, 'r') as f:
for line in f:
record = json.loads(line)
input_files.append(record[FLAGS.json_input_key])
output_files.append(record[FLAGS.json_output_key])
if FLAGS.evaluate_mse:
target_files.append(record[FLAGS.json_target_key])
if FLAGS.max_examples > 0:
input_files = input_files[:FLAGS.max_examples]
output_files = output_files[:FLAGS.max_examples]
if FLAGS.evaluate_mse:
target_files = target_files[:FLAGS.max_examples]
if FLAGS.input_base_dir != '':
input_files = [
[os.path.join(FLAGS.input_base_dir, x) for x in y]
for y in input_files
]
if FLAGS.evaluate_mse:
target_files = [
[os.path.join(FLAGS.input_base_dir, x) for x in y]
for y in target_files
]
if FLAGS.output_base_dir != '':
os.makedirs(FLAGS.output_base_dir, exist_ok=True)
output_files = [
os.path.join(FLAGS.output_base_dir, x)
for x in output_files
]
dataset = MultiFrameDataset(input_files, output_files, target_files)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=FLAGS.batch_size_factor * model.n_processes,
shuffle=False,
num_workers=FLAGS.n_workers,
)
image_saver = MultiProcessImageSaver(FLAGS.n_workers)
mses = []
for batch_images, batch_targets, batch_output_files, batch_sizes in tqdm(data_loader, ncols=0):
# batch_images is input.
batch_images = batch_images.numpy()
#
context_length = batch_images.shape[1]
generated_images = model(
batch_images,
FLAGS.n_new_frames,
FLAGS.n_candidates,
temperature=FLAGS.temperature,
top_p=FLAGS.top_p
)
repeated_batch = einops.repeat(
batch_images,
'b s h w c -> b n s h w c',
n=FLAGS.n_candidates,
)
generated_images = np.array(generated_images)
if FLAGS.evaluate_mse:
batch_targets = einops.repeat(
batch_targets.numpy(),
'b s h w c -> b n s h w c', # batch, candidate, s
n=FLAGS.n_candidates,
)
channels = batch_targets.shape[-1]
# calculate mse loss.
mse = np.mean((generated_images - batch_targets) ** 2, axis=(1, 2, 3, 4, 5))
mses.append(mse * channels)
if FLAGS.include_input:
combined = einops.rearrange(
np.concatenate([repeated_batch, generated_images], axis=2),
'b n s h w c -> b (n h) (s w) c'
)
else:
combined = einops.rearrange(
generated_images,
'b n s h w c -> b (n h) (s w) c'
)
combined = (combined * 255).astype(np.uint8)
n_frames = FLAGS.n_new_frames
if FLAGS.include_input:
n_frames += context_length
if FLAGS.resize_output == '':
resizes = None
elif FLAGS.resize_output == 'original':
resizes = batch_sizes.numpy()
resizes = resizes * np.array([[n_frames, FLAGS.n_candidates]])
else:
resize = tuple(int(x) for x in FLAGS.resize_output.split(','))
resizes = np.array([resize] * len(batch_sizes))
resizes = resizes * np.array([[n_frames, FLAGS.n_candidates]])
image_saver(combined, batch_output_files, resizes)
if FLAGS.evaluate_mse:
mses = np.concatenate(mses, axis=0)
print(f'MSE: {np.mean(mses)}')
image_saver.close()
if __name__ == "__main__":
mlxu.run(main)