LVM / utils.py
Emma02's picture
Add application file
a858bb2
raw
history blame
8.66 kB
import os
from multiprocessing import Pool
import numpy as np
import random
from PIL import Image
import re
import cv2
import glob
from natsort import natsorted
class MultiProcessImageSaver(object):
def __init__(self, n_workers=1):
self.pool = Pool(n_workers)
def __call__(self, images, output_files, resizes=None):
if resizes is None:
resizes = [None for _ in range(len(images))]
return self.pool.imap(
self.save_image,
zip(images, output_files, resizes),
)
def close(self):
self.pool.close()
self.pool.join()
@staticmethod
def save_image(args):
image, filename, resize = args
image = Image.fromarray(image)
if resize is not None:
image = image.resize(tuple(resize))
image.save(filename)
def list_dir_with_full_path(path):
return [os.path.join(path, f) for f in os.listdir(path)]
def find_all_files_in_dir(path):
files = []
for root, _, files in os.walk(path):
for file in files:
files.append(os.path.join(root, file))
return files
def is_image(path):
return (
path.endswith('.jpg')
or path.endswith('.png')
or path.endswith('.jpeg')
or path.endswith('.JPG')
or path.endswith('.PNG')
or path.endswith('.JPEG')
)
def is_video(path):
return (
path.endswith('.mp4')
or path.endswith('.avi')
or path.endswith('.MP4')
or path.endswith('.AVI')
or path.endswith('.webm')
or path.endswith('.WEBM')
or path.endswith('.mkv')
or path.endswith('.MVK')
)
def random_square_crop(img, random_generator=None):
# If no random generator is provided, use numpy's default
if random_generator is None:
random_generator = np.random.default_rng()
# Get the width and height of the image
width, height = img.size
# Determine the shorter side
min_size = min(width, height)
# Randomly determine the starting x and y coordinates for the crop
if width > height:
left = random_generator.integers(0, width - min_size)
upper = 0
else:
left = 0
upper = random_generator.integers(0, height - min_size)
# Calculate the ending x and y coordinates for the crop
right = left + min_size
lower = upper + min_size
# Crop the image
return img.crop((left, upper, right, lower))
def read_image_to_tensor(path, center_crop=1.0):
pil_im = Image.open(path).convert('RGB')
if center_crop < 1.0:
width, height = pil_im.size
pil_im = pil_im.crop((
int((1 - center_crop) * height / 2), int((1 + center_crop) * height / 2),
int((1 - center_crop) * width / 2), int((1 + center_crop) * width / 2),
))
input_img = pil_im.resize((256, 256))
input_img = np.array(input_img) / 255.0
input_img = input_img.astype(np.float32)
return input_img
def match_mulitple_path(root_dir, regex):
videos = []
for root, _, files in os.walk(root_dir):
for file in files:
videos.append(os.path.join(root, file))
videos = [v for v in videos if not v.split('/')[-1].startswith('.')]
grouped_path = {}
for r in regex:
r = re.compile(r)
for v in videos:
matched = r.findall(v)
if len(matched) > 0:
groups = matched[0]
if groups not in grouped_path:
grouped_path[groups] = []
grouped_path[groups].append(v)
grouped_path = {
k: tuple(v) for k, v in grouped_path.items()
if len(v) == len(regex)
}
return list(grouped_path.values())
def randomly_subsample_frame_indices(length, n_frames, max_stride=30, random_start=True):
assert length >= n_frames
max_stride = min(
(length - 1) // (n_frames - 1),
max_stride
)
stride = np.random.randint(1, max_stride + 1)
if random_start:
start = np.random.randint(0, length - (n_frames - 1) * stride)
else:
start = 0
return np.arange(n_frames) * stride + start
def read_frames_from_dir(dir_path, n_frames, stride, random_start=True, center_crop=1.0):
files = [os.path.join(dir_path, x) for x in os.listdir(dir_path)]
files = natsorted([x for x in files if is_image(x)])
total_frames = len(files)
if total_frames < n_frames:
return None
max_stride = (total_frames - 1) // (n_frames - 1)
stride = min(max_stride, stride)
if random_start:
start = np.random.randint(0, total_frames - (n_frames - 1) * stride)
else:
start = 0
frame_indices = np.arange(n_frames) * stride + start
frames = []
for frame_index in sorted(frame_indices):
# Check if the frame_index is valid
frames.append(read_image_to_tensor(files[frame_index], center_crop=center_crop))
if len(frames) < n_frames:
return None
frames = np.stack(frames, axis=0)
return frames
def read_frames_from_video(video_path, n_frames, stride, random_start=True, center_crop=1.0):
frames = []
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames < n_frames:
cap.release()
return None
max_stride = (total_frames - 1) // (n_frames - 1)
stride = min(max_stride, stride)
if random_start:
start = np.random.randint(0, total_frames - (n_frames - 1) * stride)
else:
start = 0
frame_indices = np.arange(n_frames) * stride + start
for frame_index in sorted(frame_indices):
# Check if the frame_index is valid
if 0 <= frame_index < total_frames:
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
ret, frame = cap.read()
if ret:
if center_crop < 1.0:
height, width, _ = frame.shape
frame = frame[
int((1 - center_crop) * height / 2):int((1 + center_crop) * height / 2),
int((1 - center_crop) * width / 2):int((1 + center_crop) * width / 2),
:
]
frame = cv2.resize(frame, (256, 256))
frames.append(frame)
else:
print(f"Frame index {frame_index} is out of bounds. Skipping...")
cap.release()
if len(frames) < n_frames:
return None
frames = np.stack(frames, axis=0).astype(np.float32) / 255.0
# From BGR to RGB
return np.stack(
[frames[..., 2], frames[..., 1], frames[..., 0]], axis=-1
)
def read_all_frames_from_video(video_path, center_crop=1.0):
frames = []
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
for frame_index in range(total_frames):
# Check if the frame_index is valid
if 0 <= frame_index < total_frames:
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
ret, frame = cap.read()
if ret:
if center_crop < 1.0:
height, width, _ = frame.shape
frame = frame[
int((1 - center_crop) * height / 2):int((1 + center_crop) * height / 2),
int((1 - center_crop) * width / 2):int((1 + center_crop) * width / 2),
:
]
frames.append(cv2.resize(frame, (256, 256)))
else:
print(f"Frame index {frame_index} is out of bounds. Skipping...")
cap.release()
if len(frames) == 0:
return None
frames = np.stack(frames, axis=0).astype(np.float32) / 255.0
# From BGR to RGB
return np.stack(
[frames[..., 2], frames[..., 1], frames[..., 0]], axis=-1
)
def read_max_span_frames_from_video(video_path, n_frames):
frames = []
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames < n_frames:
cap.release()
return None
stride = (total_frames - 1) // (n_frames - 1)
frame_indices = np.arange(n_frames) * stride
frames = []
for frame_index in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
ret, frame = cap.read()
if ret:
frames.append(cv2.resize(frame, (256, 256)))
cap.release()
if len(frames) < n_frames:
return None
frames = np.stack(frames, axis=0).astype(np.float32) / 255.0
# From BGR to RGB
return np.stack(
[frames[..., 2], frames[..., 1], frames[..., 0]], axis=-1
)