LVM / vqvae_muse.py
Emma02's picture
Add application file
a858bb2
# coding=utf-8
# Copyright 2023 The Taming Transformers Authors and The HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import partial
from typing import Tuple
import os
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from vqvae.modeling_utils import ConfigMixin, ModelMixin, register_to_config
class Upsample(nn.Module):
def __init__(self, in_channels: int, with_conv: bool):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, hidden_states):
hidden_states = torch.nn.functional.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
if self.with_conv:
hidden_states = self.conv(hidden_states)
return hidden_states
class Downsample(nn.Module):
def __init__(self, in_channels: int, with_conv: bool):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, hidden_states):
if self.with_conv:
pad = (0, 1, 0, 1) # pad height and width dim
hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0)
hidden_states = self.conv(hidden_states)
else:
hidden_states = torch.nn.functional.avg_pool2d(hidden_states, kernel_size=2, stride=2)
return hidden_states
class ResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int = None,
use_conv_shortcut: bool = False,
dropout_prob: float = 0.0,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels
self.use_conv_shortcut = use_conv_shortcut
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(
self.in_channels,
self.out_channels_,
kernel_size=3,
stride=1,
padding=1,
)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=self.out_channels_, eps=1e-6, affine=True)
self.dropout = nn.Dropout(dropout_prob)
self.conv2 = nn.Conv2d(
self.out_channels_,
self.out_channels_,
kernel_size=3,
stride=(1, 1),
padding=1,
)
if self.in_channels != self.out_channels_:
if use_conv_shortcut:
self.conv_shortcut = nn.Conv2d(
self.in_channels,
self.out_channels_,
kernel_size=3,
stride=1,
padding=1,
)
else:
self.nin_shortcut = nn.Conv2d(
self.in_channels,
self.out_channels_,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels_:
if self.use_conv_shortcut:
residual = self.conv_shortcut(residual)
else:
residual = self.nin_shortcut(residual)
return hidden_states + residual
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
conv = partial(nn.Conv2d, self.in_channels, self.in_channels, kernel_size=1, stride=1, padding=0)
self.norm = nn.GroupNorm(num_groups=32, num_channels=self.in_channels, eps=1e-6, affine=True)
self.q, self.k, self.v = conv(), conv(), conv()
self.proj_out = conv()
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.norm(hidden_states)
query = self.q(hidden_states)
key = self.k(hidden_states)
value = self.v(hidden_states)
# compute attentions
batch, channels, height, width = query.shape
query = query.reshape((batch, channels, height * width))
query = query.permute(0, 2, 1) # (b, hw, c)
key = key.reshape((batch, channels, height * width))
attn_weights = torch.bmm(query, key) # b,hw,hw
attn_weights = attn_weights * (int(channels) ** -0.5)
attn_weights = nn.functional.softmax(attn_weights, dim=2)
# attend to values
value = value.reshape((batch, channels, height * width))
attn_weights = attn_weights.permute(0, 2, 1)
hidden_states = torch.bmm(value, attn_weights)
hidden_states = hidden_states.reshape((batch, channels, height, width))
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class UpsamplingBlock(nn.Module):
def __init__(self, config, curr_res: int, block_idx: int):
super().__init__()
self.config = config
self.block_idx = block_idx
self.curr_res = curr_res
if self.block_idx == self.config.num_resolutions - 1:
block_in = self.config.hidden_channels * self.config.channel_mult[-1]
else:
block_in = self.config.hidden_channels * self.config.channel_mult[self.block_idx + 1]
block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]
res_blocks = []
attn_blocks = []
for _ in range(self.config.num_res_blocks + 1):
res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
block_in = block_out
if self.curr_res in self.config.attn_resolutions:
attn_blocks.append(AttnBlock(block_in))
self.block = nn.ModuleList(res_blocks)
self.attn = nn.ModuleList(attn_blocks)
self.upsample = None
if self.block_idx != 0:
self.upsample = Upsample(block_in, self.config.resample_with_conv)
def forward(self, hidden_states):
for i, res_block in enumerate(self.block):
hidden_states = res_block(hidden_states)
if len(self.attn) > 1:
hidden_states = self.attn[i](hidden_states)
if self.upsample is not None:
hidden_states = self.upsample(hidden_states)
return hidden_states
class DownsamplingBlock(nn.Module):
def __init__(self, config, curr_res: int, block_idx: int):
super().__init__()
self.config = config
self.curr_res = curr_res
self.block_idx = block_idx
in_channel_mult = (1,) + tuple(self.config.channel_mult)
block_in = self.config.hidden_channels * in_channel_mult[self.block_idx]
block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]
res_blocks = nn.ModuleList()
attn_blocks = nn.ModuleList()
for _ in range(self.config.num_res_blocks):
res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
block_in = block_out
if self.curr_res in self.config.attn_resolutions:
attn_blocks.append(AttnBlock(block_in))
self.block = res_blocks
self.attn = attn_blocks
self.downsample = None
if self.block_idx != self.config.num_resolutions - 1:
self.downsample = Downsample(block_in, self.config.resample_with_conv)
def forward(self, hidden_states):
for i, res_block in enumerate(self.block):
hidden_states = res_block(hidden_states)
if len(self.attn) > 1:
hidden_states = self.attn[i](hidden_states)
if self.downsample is not None:
hidden_states = self.downsample(hidden_states)
return hidden_states
class MidBlock(nn.Module):
def __init__(self, config, in_channels: int, no_attn: False, dropout: float):
super().__init__()
self.config = config
self.in_channels = in_channels
self.no_attn = no_attn
self.dropout = dropout
self.block_1 = ResnetBlock(
self.in_channels,
self.in_channels,
dropout_prob=self.dropout,
)
if not no_attn:
self.attn_1 = AttnBlock(self.in_channels)
self.block_2 = ResnetBlock(
self.in_channels,
self.in_channels,
dropout_prob=self.dropout,
)
def forward(self, hidden_states):
hidden_states = self.block_1(hidden_states)
if not self.no_attn:
hidden_states = self.attn_1(hidden_states)
hidden_states = self.block_2(hidden_states)
return hidden_states
class Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# downsampling
self.conv_in = nn.Conv2d(
self.config.num_channels,
self.config.hidden_channels,
kernel_size=3,
stride=1,
padding=1,
)
curr_res = self.config.resolution
downsample_blocks = []
for i_level in range(self.config.num_resolutions):
downsample_blocks.append(DownsamplingBlock(self.config, curr_res, block_idx=i_level))
if i_level != self.config.num_resolutions - 1:
curr_res = curr_res // 2
self.down = nn.ModuleList(downsample_blocks)
# middle
mid_channels = self.config.hidden_channels * self.config.channel_mult[-1]
self.mid = MidBlock(config, mid_channels, self.config.no_attn_mid_block, self.config.dropout)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=mid_channels, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(
mid_channels,
self.config.z_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, pixel_values):
# downsampling
hidden_states = self.conv_in(pixel_values)
for block in self.down:
hidden_states = block(hidden_states)
# middle
hidden_states = self.mid(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class Decoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# compute in_channel_mult, block_in and curr_res at lowest res
block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1]
curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
self.z_shape = (1, self.config.z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(
self.config.z_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
)
# middle
self.mid = MidBlock(config, block_in, self.config.no_attn_mid_block, self.config.dropout)
# upsampling
upsample_blocks = []
for i_level in reversed(range(self.config.num_resolutions)):
upsample_blocks.append(UpsamplingBlock(self.config, curr_res, block_idx=i_level))
if i_level != 0:
curr_res = curr_res * 2
self.up = nn.ModuleList(list(reversed(upsample_blocks))) # reverse to get consistent order
# end
block_out = self.config.hidden_channels * self.config.channel_mult[0]
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(
block_out,
self.config.num_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, hidden_states):
# z to block_in
hidden_states = self.conv_in(hidden_states)
# middle
hidden_states = self.mid(hidden_states)
# upsampling
for block in reversed(self.up):
hidden_states = block(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class VectorQuantizer(nn.Module):
"""
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
Discretization bottleneck part of the VQ-VAE.
"""
def __init__(self, num_embeddings, embedding_dim, commitment_cost):
r"""
Args:
num_embeddings: number of vectors in the quantized space.
embedding_dim: dimensionality of the tensors in the quantized space.
Inputs to the modules must be in this format as well.
commitment_cost: scalar which controls the weighting of the loss terms
(see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta).
"""
super().__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.commitment_cost = commitment_cost
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
self.embedding.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings)
def forward(self, hidden_states, return_loss=False):
"""
Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the
closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width)
quantization pipeline:
1. get encoder input (B,C,H,W)
2. flatten input to (B*H*W,C)
"""
# reshape z -> (batch, height, width, channel) and flatten
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
distances = self.compute_distances(hidden_states)
min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1)
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states)
min_encodings.scatter_(1, min_encoding_indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(hidden_states.shape)
# reshape to (batch, num_tokens)
min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)
# compute loss for embedding
loss = None
if return_loss:
loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean(
(z_q - hidden_states.detach()) ** 2
)
# preserve gradients
z_q = hidden_states + (z_q - hidden_states).detach()
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, min_encoding_indices, loss
def compute_distances(self, hidden_states):
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
hidden_states_flattended = hidden_states.reshape((-1, self.embedding_dim))
emb_weights = self.embedding.weight.t()
inputs_norm_sq = hidden_states_flattended.pow(2.0).sum(dim=1, keepdim=True)
codebook_t_norm_sq = emb_weights.pow(2.0).sum(dim=0, keepdim=True)
distances = torch.addmm(
inputs_norm_sq + codebook_t_norm_sq,
hidden_states_flattended,
emb_weights,
alpha=-2.0,
)
return distances
def get_codebook_entry(self, indices):
# indices are expected to be of shape (batch, num_tokens)
# get quantized latent vectors
batch, num_tokens = indices.shape
z_q = self.embedding(indices)
z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2)
return z_q
# adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372
def get_soft_code(self, hidden_states, temp=1.0, stochastic=False):
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() # (batch, height, width, channel)
distances = self.compute_distances(hidden_states) # (batch * height * width, num_embeddings)
soft_code = F.softmax(-distances / temp, dim=-1) # (batch * height * width, num_embeddings)
if stochastic:
code = torch.multinomial(soft_code, 1) # (batch * height * width, 1)
else:
code = distances.argmin(dim=-1) # (batch * height * width)
code = code.reshape(hidden_states.shape[0], -1) # (batch, height * width)
batch, num_tokens = code.shape
soft_code = soft_code.reshape(batch, num_tokens, -1) # (batch, height * width, num_embeddings)
return soft_code, code
def get_code(self, hidden_states):
# reshape z -> (batch, height, width, channel)
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
distances = self.compute_distances(hidden_states)
indices = torch.argmin(distances, axis=1).unsqueeze(1)
indices = indices.reshape(hidden_states.shape[0], -1)
return indices
class VQGANModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
resolution: int = 256,
num_channels: int = 3,
hidden_channels: int = 128,
channel_mult: Tuple = (1, 1, 2, 2, 4),
num_res_blocks: int = 2,
attn_resolutions: int = (16,),
no_attn_mid_block: bool = False,
z_channels: int = 256,
num_embeddings: int = 1024,
quantized_embed_dim: int = 256,
dropout: float = 0.0,
resample_with_conv: bool = True,
commitment_cost: float = 0.25,
):
super().__init__()
self.config.num_resolutions = len(channel_mult)
self.config.reduction_factor = 2 ** (self.config.num_resolutions - 1)
self.config.latent_size = resolution // self.config.reduction_factor
self.encoder = Encoder(self.config)
self.decoder = Decoder(self.config)
self.quantize = VectorQuantizer(
self.config.num_embeddings, self.config.quantized_embed_dim, self.config.commitment_cost
)
self.quant_conv = nn.Conv2d(
self.config.z_channels,
self.config.quantized_embed_dim,
kernel_size=1,
)
self.post_quant_conv = nn.Conv2d(
self.config.quantized_embed_dim,
self.config.z_channels,
kernel_size=1,
)
def encode(self, pixel_values, return_loss=False):
hidden_states = self.encoder(pixel_values)
hidden_states = self.quant_conv(hidden_states)
quantized_states, codebook_indices, codebook_loss = self.quantize(hidden_states, return_loss)
output = (quantized_states, codebook_indices)
if return_loss:
output = output + (codebook_loss,)
return output
def decode(self, quantized_states):
hidden_states = self.post_quant_conv(quantized_states)
reconstructed_pixel_values = self.decoder(hidden_states)
return reconstructed_pixel_values
def decode_code(self, codebook_indices):
quantized_states = self.quantize.get_codebook_entry(codebook_indices)
reconstructed_pixel_values = self.decode(quantized_states)
return reconstructed_pixel_values
def get_code(self, pixel_values):
hidden_states = self.encoder(pixel_values)
hidden_states = self.quant_conv(hidden_states)
codebook_indices = self.quantize.get_code(hidden_states)
return codebook_indices
def forward(self, pixel_values, return_loss=False):
hidden_states = self.encoder(pixel_values)
hidden_states = self.quant_conv(hidden_states)
quantized_states, codebook_indices, codebook_loss = self.quantize(hidden_states, return_loss)
reconstructed_pixel_values = self.decode(quantized_states)
outputs = (reconstructed_pixel_values, quantized_states, codebook_indices)
if return_loss:
outputs = outputs + (codebook_loss,)
return outputs
def get_tokenizer_muse():
ckpts_path = "Emma02/vqvae_ckpts"
net = VQGANModel.from_pretrained(ckpts_path)
return net