Spaces:
Sleeping
Sleeping
import streamlit as st | |
from st_audiorec import st_audiorec | |
from Modules.Speech2Text.transcribe import transcribe | |
import base64 | |
from langchain_mistralai import ChatMistralAI | |
from langchain_core.prompts import ChatPromptTemplate | |
from dotenv import load_dotenv | |
load_dotenv() # load .env api keys | |
import os | |
from Modules.rag import rag_chain | |
from Modules.router import router_chain | |
# from Modules.PoseEstimation.pose_agent import agent_executor | |
mistral_api_key = os.getenv("MISTRAL_API_KEY") | |
from Modules.PoseEstimation import pose_estimator | |
from utils import save_uploaded_file | |
def format_messages(messages): | |
formatted_messages = "" | |
for message in messages: | |
role = message["role"] | |
content = message["content"] | |
formatted_messages += f"{role}: {content}\n" | |
return formatted_messages | |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed") | |
# Create two columns | |
col1, col2 = st.columns(2) | |
video_uploaded = None | |
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0) | |
prompt = ChatPromptTemplate.from_template( | |
template =""" You are a personal AI sports coach with an expertise in nutrition and fitness. | |
You are having a conversation with your client, which is either a beginner or an advanced athlete. | |
You must be gentle, kind, and motivative. | |
Always try to answer concisely to the queries. | |
User: {question} | |
AI Coach:""" | |
) | |
base_chain = prompt | llm | |
# First column containers | |
with col1: | |
st.subheader("Audio Recorder") | |
recorded = False | |
temp_path = 'data/temp_audio/audio_file.wav' | |
wav_audio_data = st_audiorec() | |
if wav_audio_data is not None: | |
with open(temp_path, 'wb') as f: | |
# Write the audio data to the file | |
f.write(wav_audio_data) | |
instruction = transcribe(temp_path) | |
print(instruction) | |
recorded = True | |
st.subheader("LLM answering") | |
if recorded: | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
st.session_state.messages.append({"role": "user", "content": instruction}) | |
with st.chat_message("user"): | |
st.markdown(instruction) | |
with st.chat_message("assistant"): | |
# Build answer from LLM | |
direction = router_chain.invoke({"question":instruction}) | |
if direction=='fitness_advices': | |
response = rag_chain.invoke( | |
instruction | |
) | |
elif direction=='smalltalk': | |
response = base_chain.invoke( | |
{"question":instruction} | |
).content | |
# elif direction =='movement_analysis': | |
# response = agent_executor.invoke( | |
# {"input" : instruction} | |
# )["output"] | |
print(type(response)) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
st.markdown(response) | |
st.subheader("Movement Analysis") | |
# TO DO | |
# Second column containers | |
with col2: | |
st.subheader("Sports Agenda") | |
# TO DO | |
st.subheader("Video Analysis") | |
ask_video = st.empty() | |
if video_uploaded is None: | |
video_uploaded = ask_video.file_uploader("Choose a video file", type=["mp4", "ogg", "webm"]) | |
if video_uploaded: | |
video_uploaded = save_uploaded_file(video_uploaded) | |
ask_video.empty() | |
_left, mid, _right = st.columns(3) | |
with mid: | |
st.video(video_uploaded) | |
apply_pose = st.button("Apply Pose Estimation") | |
if apply_pose: | |
with st.spinner("Processing video"): | |
keypoints = pose_estimator.get_keypoints_from_keypoints(pose_estimator.model, video_uploaded) | |
st.subheader("Graph Displayer") | |
# TO DO |