Nico8800
add curl agent with elbow and shoulder tools
e051030
from Modules.PoseEstimation.pose_estimator import calculate_angle, joints_id_dict, model
from langchain.tools import tool
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI
from operator import itemgetter
from typing import Dict, List, Union
from langchain_core.messages import AIMessage
from langchain_core.runnables import (
Runnable,
RunnableLambda,
RunnableMap,
RunnablePassthrough,
)
import numpy as np
# If api_key is not passed, default behavior is to use the `MISTRAL_API_KEY` environment variable.
llm = ChatMistralAI(model='mistral-large-latest', api_key="i5jSJkCFNGKfgIztloxTMjfckiFbYBj4")
@tool
def shoulder_angle(pose: list) -> float:
"""
Computes the shoulder angle.
Args:
pose (list): list of keypoints
Returns:
arm_angle (float): arm angle with chest
"""
right_elbow = pose[joints_id_dict['right_elbow']]
right_shoulder = pose[joints_id_dict['right_shoulder']]
right_hip = pose[joints_id_dict['right_hip']]
left_elbow = pose[joints_id_dict['left_elbow']]
left_shoulder = pose[joints_id_dict['left_shoulder']]
left_hip = pose[joints_id_dict['left_hip']]
right_arm_angle = calculate_angle(right_elbow, right_shoulder, right_hip)
left_arm_angle = calculate_angle(left_elbow, left_shoulder, left_hip)
return right_arm_angle
@tool
def elbow_angle(pose):
"""
Computes the elbow angle.
Args:
pose (list): list of keypoints
Returns:
elbow_angle (float): elbow angle with chest
"""
right_elbow = pose[joints_id_dict['right_elbow']]
right_shoulder = pose[joints_id_dict['right_shoulder']]
right_wrist = pose[joints_id_dict['right_wrist']]
left_elbow = pose[joints_id_dict['left_elbow']]
left_shoulder = pose[joints_id_dict['left_shoulder']]
left_wrist = pose[joints_id_dict['left_wrist']]
right_elbow_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
left_elbow_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
return right_elbow_angle
tools = [shoulder_angle, elbow_angle]
llm_with_tools = llm.bind_tools(tools)
tool_map = {tool.name: tool for tool in tools}
# prompt = ChatPromptTemplate.from_messages(
# [
# (
# "system",
# "You are a helpful assistant. Make sure to use the compute_right_knee_angle tool for information.",
# ),
# ("placeholder", "{chat_history}"),
# ("human", "{input}"),
# ("placeholder", "{agent_scratchpad}"),
# ]
# )
# Construct the Tools agent
# curl_agent = create_tool_calling_agent(llm, tools, prompt)
pose_sequence = [
# Pose 1
[
# Head
[50, 50],
# Shoulders
[40, 80], [60, 80],
# Elbows
[30, 110], [70, 110],
# Wrists
[25, 140], [75, 140],
# Hips
[45, 180], [55, 180],
# Knees
[40, 220], [60, 220],
# Ankles
[35, 250], [65, 250],
],
# Pose 2
[
# Head
[60, 60],
# Shoulders
[50, 90], [70, 90],
# Elbows
[40, 120], [80, 120],
# Wrists
[35, 150], [85, 150],
# Hips
[55, 180], [65, 180],
# Knees
[50, 220], [70, 220],
# Ankles
[45, 250], [75, 250],
]]
# Create an agent executor by passing in the agent and tools
# agent_executor = AgentExecutor(agent=curl_agent, tools=tools, verbose=True)
# agent_executor.invoke({"input": f"Compute shoulder and elbow angle and display them given the following pose estimation: {pose_sequence[0]}"})
def call_tools(msg: AIMessage) -> Runnable:
"""Simple sequential tool calling helper."""
tool_map = {tool.name: tool for tool in tools}
tool_calls = msg.tool_calls.copy()
for tool_call in tool_calls:
tool_call["output"] = tool_map[tool_call["name"]].invoke(tool_call["args"])
return tool_calls
chain = llm_with_tools | call_tools
print(chain.invoke(f"What is the shoulder angle and elbow angle given the following pose estimation: {pose_sequence[0]}"))