Spaces:
Sleeping
Sleeping
Doux Thibault
commited on
Commit
•
025e412
1
Parent(s):
99d115b
add llm to front + api key in dot env
Browse files- .env +1 -0
- Modules/rag.py +4 -6
- app.py +10 -2
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
MISTRAL_API_KEY = "i5jSJkCFNGKfgIztloxTMjfckiFbYBj4"
|
Modules/rag.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
import os
|
2 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
3 |
-
|
4 |
-
#
|
5 |
-
os.environ['TAVILY_API_KEY'] = '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'
|
6 |
|
7 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
8 |
-
|
9 |
from langchain_community.document_loaders import PyPDFLoader
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.document_loaders import WebBaseLoader
|
@@ -19,7 +18,6 @@ from langchain_mistralai import ChatMistralAI
|
|
19 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
20 |
from langchain_community.tools import DuckDuckGoSearchRun
|
21 |
|
22 |
-
|
23 |
def load_chunk_persist_pdf() -> Chroma:
|
24 |
pdf_folder_path = "data/pdf_folder/"
|
25 |
documents = []
|
@@ -30,7 +28,7 @@ def load_chunk_persist_pdf() -> Chroma:
|
|
30 |
documents.extend(loader.load())
|
31 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
32 |
chunked_documents = text_splitter.split_documents(documents)
|
33 |
-
|
34 |
vectorstore = Chroma.from_documents(
|
35 |
documents=chunked_documents,
|
36 |
embedding=MistralAIEmbeddings(),
|
|
|
1 |
import os
|
2 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
load_dotenv() # load .env api keys
|
|
|
5 |
|
6 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
7 |
+
|
8 |
from langchain_community.document_loaders import PyPDFLoader
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain_community.document_loaders import WebBaseLoader
|
|
|
18 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
19 |
from langchain_community.tools import DuckDuckGoSearchRun
|
20 |
|
|
|
21 |
def load_chunk_persist_pdf() -> Chroma:
|
22 |
pdf_folder_path = "data/pdf_folder/"
|
23 |
documents = []
|
|
|
28 |
documents.extend(loader.load())
|
29 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
30 |
chunked_documents = text_splitter.split_documents(documents)
|
31 |
+
os.makedirs("data/chroma_store/", exist_ok=True)
|
32 |
vectorstore = Chroma.from_documents(
|
33 |
documents=chunked_documents,
|
34 |
embedding=MistralAIEmbeddings(),
|
app.py
CHANGED
@@ -2,11 +2,17 @@ import streamlit as st
|
|
2 |
from st_audiorec import st_audiorec
|
3 |
from Modules.Speech2Text.transcribe import transcribe
|
4 |
import base64
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
|
7 |
# Create two columns
|
8 |
col1, col2 = st.columns(2)
|
9 |
video_uploaded = None
|
|
|
10 |
|
11 |
# First column containers
|
12 |
with col1:
|
@@ -37,8 +43,10 @@ with col1:
|
|
37 |
|
38 |
with st.chat_message("assistant"):
|
39 |
# Build answer from LLM
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
st.subheader("Movement Analysis")
|
44 |
# TO DO
|
|
|
2 |
from st_audiorec import st_audiorec
|
3 |
from Modules.Speech2Text.transcribe import transcribe
|
4 |
import base64
|
5 |
+
from langchain_mistralai import ChatMistralAI
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
load_dotenv() # load .env api keys
|
8 |
+
import os
|
9 |
+
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
10 |
|
11 |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
|
12 |
# Create two columns
|
13 |
col1, col2 = st.columns(2)
|
14 |
video_uploaded = None
|
15 |
+
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
|
16 |
|
17 |
# First column containers
|
18 |
with col1:
|
|
|
43 |
|
44 |
with st.chat_message("assistant"):
|
45 |
# Build answer from LLM
|
46 |
+
|
47 |
+
response = llm.invoke(st.session_state.messages).content
|
48 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
49 |
+
st.markdown(response)
|
50 |
|
51 |
st.subheader("Movement Analysis")
|
52 |
# TO DO
|