Spaces:
Sleeping
Sleeping
Doux Thibault
commited on
Commit
•
8ee218a
1
Parent(s):
42ef85f
augment rag docs
Browse files- Modules/rag.py +22 -33
Modules/rag.py
CHANGED
@@ -7,26 +7,22 @@ mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
|
7 |
|
8 |
from langchain_community.document_loaders import PyPDFLoader
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
from langchain_community.
|
11 |
-
from langchain_community.vectorstores import Chroma, FAISS
|
12 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
13 |
from langchain_mistralai import MistralAIEmbeddings
|
14 |
from langchain import hub
|
15 |
-
from
|
16 |
-
|
17 |
-
create_retrieval_chain,
|
18 |
-
)
|
19 |
from typing import Literal
|
20 |
-
from langchain_core.prompts import ChatPromptTemplate
|
21 |
-
from langchain_core.pydantic_v1 import BaseModel, Field
|
22 |
from langchain_mistralai import ChatMistralAI
|
23 |
-
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
24 |
-
from langchain_community.tools import DuckDuckGoSearchRun
|
25 |
from pathlib import Path
|
26 |
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
-
pdf_folder_path = os.path.join(os.getcwd(),Path("data/pdf/"))
|
30 |
documents = []
|
31 |
for file in os.listdir(pdf_folder_path):
|
32 |
if file.endswith('.pdf'):
|
@@ -44,30 +40,23 @@ def load_chunk_persist_pdf() -> Chroma:
|
|
44 |
vectorstore.persist()
|
45 |
return vectorstore
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
datasource: Literal["vectorstore", "websearch"] = Field(
|
57 |
-
...,
|
58 |
-
description="Given a user question choose to route it to web search or a vectorstore.",
|
59 |
-
)
|
60 |
-
|
61 |
-
# LLM with function call
|
62 |
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
|
63 |
|
64 |
-
|
65 |
prompt = ChatPromptTemplate.from_template(
|
66 |
"""
|
67 |
You are a professional AI coach specialized in fitness, bodybuilding and nutrition.
|
68 |
You must adapt to the user : if he is a beginner, use simple words. You are gentle and motivative.
|
69 |
Use the following pieces of retrieved context to answer the question.
|
70 |
-
If you don't know the answer,
|
71 |
Use three sentences maximum and keep the answer concise.
|
72 |
|
73 |
Question: {question}
|
@@ -77,12 +66,11 @@ prompt = ChatPromptTemplate.from_template(
|
|
77 |
Answer:
|
78 |
""",
|
79 |
)
|
80 |
-
from langchain_core.output_parsers import StrOutputParser
|
81 |
-
from langchain_core.runnables import RunnablePassthrough
|
82 |
|
83 |
def format_docs(docs):
|
84 |
return "\n\n".join(doc.page_content for doc in docs)
|
85 |
|
|
|
86 |
|
87 |
rag_chain = (
|
88 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
@@ -92,6 +80,7 @@ rag_chain = (
|
|
92 |
)
|
93 |
|
94 |
|
95 |
-
# print(rag_chain.invoke("Build a fitness program for me. Be precise in terms of exercises"))
|
96 |
|
97 |
-
|
|
|
|
|
|
7 |
|
8 |
from langchain_community.document_loaders import PyPDFLoader
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain_community.vectorstores import Chroma
|
|
|
|
|
11 |
from langchain_mistralai import MistralAIEmbeddings
|
12 |
from langchain import hub
|
13 |
+
from langchain_core.output_parsers import StrOutputParser
|
14 |
+
from langchain_core.runnables import RunnablePassthrough
|
|
|
|
|
15 |
from typing import Literal
|
16 |
+
from langchain_core.prompts import ChatPromptTemplate
|
|
|
17 |
from langchain_mistralai import ChatMistralAI
|
|
|
|
|
18 |
from pathlib import Path
|
19 |
|
20 |
+
from langchain.retrievers import (
|
21 |
+
MergerRetriever,
|
22 |
+
)
|
23 |
+
def load_chunk_persist_pdf(task) -> Chroma:
|
24 |
|
25 |
+
pdf_folder_path = os.path.join(os.getcwd(),Path(f"data/pdf/{task}"))
|
26 |
documents = []
|
27 |
for file in os.listdir(pdf_folder_path):
|
28 |
if file.endswith('.pdf'):
|
|
|
40 |
vectorstore.persist()
|
41 |
return vectorstore
|
42 |
|
43 |
+
zero2hero_vectorstore = load_chunk_persist_pdf("zero2hero")
|
44 |
+
bodyweight_vectorstore = load_chunk_persist_pdf("bodyweight")
|
45 |
+
nutrition_vectorstore = load_chunk_persist_pdf("nutrition")
|
46 |
+
workout_vectorstore = load_chunk_persist_pdf("workout")
|
47 |
+
zero2hero_retriever = zero2hero_vectorstore.as_retriever()
|
48 |
+
nutrition_retriever = nutrition_vectorstore.as_retriever()
|
49 |
+
bodyweight_retriever = bodyweight_vectorstore.as_retriever()
|
50 |
+
workout_retriever = workout_vectorstore.as_retriever()
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
|
53 |
|
|
|
54 |
prompt = ChatPromptTemplate.from_template(
|
55 |
"""
|
56 |
You are a professional AI coach specialized in fitness, bodybuilding and nutrition.
|
57 |
You must adapt to the user : if he is a beginner, use simple words. You are gentle and motivative.
|
58 |
Use the following pieces of retrieved context to answer the question.
|
59 |
+
If you don't know the answer, use your common knowledge.
|
60 |
Use three sentences maximum and keep the answer concise.
|
61 |
|
62 |
Question: {question}
|
|
|
66 |
Answer:
|
67 |
""",
|
68 |
)
|
|
|
|
|
69 |
|
70 |
def format_docs(docs):
|
71 |
return "\n\n".join(doc.page_content for doc in docs)
|
72 |
|
73 |
+
retriever = MergerRetriever(retrievers=[zero2hero_retriever, bodyweight_retriever, nutrition_retriever, workout_retriever])
|
74 |
|
75 |
rag_chain = (
|
76 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
|
|
80 |
)
|
81 |
|
82 |
|
|
|
83 |
|
84 |
+
print(rag_chain.invoke("What supplement could i buy to improve my sleep?"))
|
85 |
+
|
86 |
+
# print(rag_chain.invoke("I am a 45 years old woman and I have to loose weight for the summer. Provide me with a fitness program, and a nutrition program"))
|