import streamlit as st from st_audiorec import st_audiorec from Modules.Speech2Text.transcribe import transcribe import base64 from langchain_mistralai import ChatMistralAI from langchain_core.prompts import ChatPromptTemplate from dotenv import load_dotenv load_dotenv() # load .env api keys import os import shutil from Modules.rag import rag_chain from Modules.router import router_chain from Modules.PoseEstimation.pose_agent import agent_executor mistral_api_key = os.getenv("MISTRAL_API_KEY") from Modules.PoseEstimation import pose_estimator from utils import save_uploaded_file, encode_video_H264 st.set_page_config(layout="wide", initial_sidebar_state="collapsed") # Create two columns col1, col2 = st.columns(2) video_uploaded = None llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0) prompt = ChatPromptTemplate.from_template( template =""" You are a personal AI sports coach with an expertise in nutrition and fitness. You are having a conversation with your client, which is either a beginner or an advanced athlete. You must be gentle, kind, and motivative. Always try to answer concisely to the queries. User: {question} AI Coach:""" ) base_chain = prompt | llm # First column containers with col1: st.subheader("LLM answering") if "messages" not in st.session_state: st.session_state.messages = [] if "file_name" not in st.session_state: st.session_state.file_name = None for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("What is up?"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant", avatar="data/AI_Bro.png"): # Build answer from LLM direction = router_chain.invoke({"question":prompt}) if direction=='fitness_advices': with st.spinner("Thinking..."): response = rag_chain.invoke( prompt ) elif direction=='smalltalk': with st.spinner("Thinking..."): response = base_chain.invoke( {"question":prompt} ).content elif direction =='movement_analysis': if st.session_state.file_name is not None: prompt += "the file name is " + st.session_state.file_name with st.spinner("Analyzing movement..."): response = agent_executor.invoke( {"input" : prompt} )["output"] st.session_state.messages.append({"role": "assistant", "content": response}) st.markdown(response) # Second column containers with col2: # st.subheader("Sports Agenda") # TO DO st.subheader("Video Analysis") video_uploaded = st.file_uploader("Choose a video file", type=["mp4", "ogg", "webm", "MOV"]) if video_uploaded: video_uploaded = save_uploaded_file(video_uploaded) if video_uploaded.split("/")[-1] != st.session_state.file_name: shutil.rmtree('fig', ignore_errors=True) shutil.rmtree('/home/user/.pyenv/runs', ignore_errors=True) st.session_state.file_name = None st.session_state.file_name = video_uploaded.split("/")[-1] _left, mid, _right = st.columns([1, 3, 1]) with mid: if os.path.exists('/home/user/.pyenv/runs'): predict_list = os.listdir(os.path.join('/home/user/.pyenv/runs', 'pose')) predict_list.sort() predict_dir = predict_list[-1] file_name = os.listdir(os.path.join('/home/user/.pyenv/runs', 'pose', predict_dir))[0] file_path =os.path.join('/home/user/.pyenv/runs', 'pose', predict_dir, file_name) file_path = encode_video_H264(file_path, remove_original=True) st.video(file_path, loop=True) else : st.video(video_uploaded) if os.path.exists('fig'): st.subheader("Graph Displayer") file_list = os.listdir('fig') for file in file_list: st.image(os.path.join('fig', file))