not-lain's picture
🌘wπŸŒ–
31d7c4a verified
raw
history blame
6.35 kB
import gradio as gr
from datasets import load_dataset
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import time
token = os.environ["HF_TOKEN"]
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
data = dataset["train"]
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# use quantization to lower GPU usage
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id,token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=bnb_config,
token=token
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
def search(query: str, k: int = 3 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = ST.encode(query) # embed new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
def format_prompt(prompt,retrieved_documents,k):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
return PROMPT
@spaces.GPU(duration=150)
def talk(message,history):
k = 1 # number of retrieved documents
scores , retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
# tell the model to generate
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
temperature=0.75,
eos_token_id=terminators,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# def talk(message, history):
# print("history, ", history)
# print("message ", message)
# print("searching dataset ...")
# retrieved_examples = search(message)
# print("preparing prompt ...")
# message, metadata = prepare_prompt(message, retrieved_examples)
# resources = HEADER
# print("preparing metadata ...")
# for title, url in metadata:
# resources += f"[{title}]({url}), "
# print("preparing chat template ...")
# chat = []
# for item in history:
# chat.append({"role": "user", "content": item[0]})
# cleaned_past = item[1].split(HEADER)[0]
# chat.append({"role": "assistant", "content": cleaned_past})
# chat.append({"role": "user", "content": message})
# messages = tokenizer.apply_chat_template(
# chat, tokenize=False, add_generation_prompt=True
# )
# print("chat template prepared, ", messages)
# print("tokenizing input ...")
# # Tokenize the messages string
# model_inputs = tokenizer([messages], return_tensors="pt").to(device)
# streamer = TextIteratorStreamer(
# tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
# )
# generate_kwargs = dict(
# model_inputs,
# streamer=streamer,
# max_new_tokens=1024,
# do_sample=True,
# top_p=0.95,
# top_k=1000,
# temperature=0.75,
# num_beams=1,
# )
# print("initializing thread ...")
# t = Thread(target=model.generate, kwargs=generate_kwargs)
# t.start()
# time.sleep(1)
# # Initialize an empty string to store the generated text
# partial_text = ""
# i = 0
# while t.is_alive():
# try:
# for new_text in streamer:
# if new_text is not None:
# partial_text += new_text
# yield partial_text
# except Exception as e:
# print(f"retry number {i}\n LOGS:\n")
# i+=1
# print(e, e.args)
# partial_text += resources
# yield partial_text
TITLE = "# RAG"
DESCRIPTION = """
A rag pipeline with a chatbot feature
Resources used to build this project :
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
* dataset : https://huggingface.co/datasets/not-lain/wikipedia
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index
* chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
"""
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what's anarchy ? "]],
title=TITLE,
description=DESCRIPTION,
)
demo.launch(debug=True)