File size: 4,229 Bytes
07ffad3
42df98c
1b7e4b0
07ffad3
 
 
 
 
eaca477
1b7e4b0
 
07ffad3
 
1b7e4b0
 
 
 
 
 
eaca477
1b7e4b0
07ffad3
eaca477
 
1b7e4b0
 
07ffad3
5ea07e3
1b7e4b0
eaca477
b0b771c
1b7e4b0
42df98c
eaca477
e4b2161
eaca477
 
 
 
1b7e4b0
 
eaca477
1b7e4b0
 
07ffad3
1b7e4b0
eaca477
 
 
 
 
 
 
07ffad3
 
cc1edc1
07ffad3
eaca477
 
07ffad3
eaca477
1b7e4b0
07ffad3
 
 
 
 
 
 
42df98c
 
 
07ffad3
eaca477
07ffad3
eaca477
1b7e4b0
07ffad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18b530b
07ffad3
a846224
 
07ffad3
 
18b530b
07ffad3
 
e4b2161
 
31630cf
 
18b530b
 
 
 
42df98c
 
 
31630cf
07ffad3
 
18b530b
ef4a283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18b530b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
from datasets import load_dataset

import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
from datasets import load_dataset


token = os.environ["HF_TOKEN"]
model = AutoModelForCausalLM.from_pretrained(
    "google/gemma-7b-it",
    # torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    torch_dtype=torch.float16,
    token=token,
)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it", token=token)
device = torch.device("cuda")
model = model.to(device)
RAG = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
TOP_K = 3
# prepare data
# since data is too big we will only select the first 3K lines

data = load_dataset("not-lain/wikipedia-small-3000-embedded", split="train")

# index dataset
data.add_faiss_index("embedding")


def search(query: str, k: int = TOP_K):
    embedded_query = RAG.encode(query)
    scores, retrieved_examples = data.get_nearest_examples(
        "embedding", embedded_query, k=k
    )
    return retrieved_examples


def prepare_prompt(query, retrieved_examples):
    prompt = (
        f"Query: {query}\nContinue to answer the query by using the Search Results:\n"
    )
    urls = []
    titles = retrieved_examples["title"][::-1]
    texts = retrieved_examples["text"][::-1]
    urls = retrieved_examples["url"][::-1]
    titles = titles[::-1]
    for i in range(TOP_K):
        prompt += f"Title: {titles[i]}, Text: {texts[i]}\n"
    return prompt, (titles, urls)


@spaces.GPU(duration=150)
def talk(message, history):
    retrieved_examples = search(message)
    message, metadata = prepare_prompt(message, retrieved_examples)
    resources = "\nRESOURCES:\n"
    for title, url in metadata:
        resources += f"[{title}]({url}),  "
    chat = []
    for item in history:
        chat.append({"role": "user", "content": item[0]})
        if item[1] is not None:
            cleaned_past = item[1].split("\nRESOURCES:\n")[0]
            chat.append({"role": "assistant", "content": cleaned_past})
    chat.append({"role": "user", "content": message})
    messages = tokenizer.apply_chat_template(
        chat, tokenize=False, add_generation_prompt=True
    )
    # Tokenize the messages string
    model_inputs = tokenizer([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(
        tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        top_p=0.95,
        top_k=1000,
        temperature=0.75,
        num_beams=1,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    # Initialize an empty string to store the generated text
    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        print("partial_text : ", partial_text)
        yield partial_text
    # partial_text += resources
    # yield partial_text


TITLE = "# RAG"

DESCRIPTION = """
A rag pipeline with a chatbot feature

Resources used to build this project :

* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
* dataset : https://huggingface.co/datasets/not-lain/wikipedia-small-3000-embedded (used mxbai-colbert-large-v1 to create the embedding column )
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index 
* chatbot : https://huggingface.co/google/gemma-7b-it

If you want to support my work please click on the heart react button ❤️🤗

<sub><sup><sub><sup>psst, I am still open for work, so please reach me out at https://not-lain.github.io/</sup></sub></sup></sub>
"""


demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["what is machine learning"]],
    title=TITLE,
    description=DESCRIPTION,
)
demo.launch(debug=True)