EnverLee's picture
Update app.py
07a8064 verified
raw
history blame
4.91 kB
import gradio as gr
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
import faiss
import fitz # PyMuPDF
import os
# ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
# PDF์—์„œ ํ…์ŠคํŠธ ์ถ”์ถœ
def extract_text_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text()
return text
# ๊ธฐ๋ณธ ์ œ๊ณต PDF ํŒŒ์ผ ๊ฒฝ๋กœ
default_pdf_path = "laws.pdf"
# FAISS ์ธ๋ฑ์Šค ์ดˆ๊ธฐํ™”
index = None
law_sentences = []
# ๊ธฐ๋ณธ ์ œ๊ณต PDF ํŒŒ์ผ ์ฒ˜๋ฆฌ ํ•จ์ˆ˜
def process_default_pdf():
global index, law_sentences
# PDF์—์„œ ํ…์ŠคํŠธ ์ถ”์ถœ
law_text = extract_text_from_pdf(default_pdf_path)
# ๋ฌธ์žฅ์„ ๋‚˜๋ˆ„๊ณ  ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
law_sentences = law_text.split('\n')
law_embeddings = ST.encode(law_sentences)
# FAISS ์ธ๋ฑ์Šค ์ƒ์„ฑ ๋ฐ ์ž„๋ฒ ๋”ฉ ์ถ”๊ฐ€
index = faiss.IndexFlatL2(law_embeddings.shape[1])
index.add(law_embeddings)
# ์ฒ˜์Œ์— ๊ธฐ๋ณธ PDF ํŒŒ์ผ ์ฒ˜๋ฆฌ
process_default_pdf()
# ๋ฒ•๋ฅ  ๋ฌธ์„œ ๊ฒ€์ƒ‰ ํ•จ์ˆ˜
def search_law(query, k=5):
query_embedding = ST.encode([query])
D, I = index.search(query_embedding, k)
return [(law_sentences[i], D[0][idx]) for idx, i in enumerate(I[0])]
# Hugging Face์—์„œ ๋ฒ•๋ฅ  ์ƒ๋‹ด ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋“œ
dataset = load_dataset("jihye-moon/LawQA-Ko")
data = dataset["train"]
# ์งˆ๋ฌธ ์ปฌ๋Ÿผ์„ ์ž„๋ฒ ๋”ฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ปฌ๋Ÿผ์— ์ถ”๊ฐ€
data = data.map(lambda x: {"question_embedding": ST.encode(x["question"])}, batched=True)
data.add_faiss_index(column="question_embedding")
# LLaMA ๋ชจ๋ธ ์„ค์ •
model_id = "google/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
SYS_PROMPT = """You are an assistant for answering legal questions.
You are given the extracted parts of legal documents and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer.
you must answer korean.
You're a LAWEYE legal advisor bot. Your job is to provide korean legal assistance by asking questions to korean speaker, then offering advice or guidance based on the information and law provisions provided. Make sure you only respond with one question at a time.
...
"""
# ๋ฒ•๋ฅ  ์ƒ๋‹ด ๋ฐ์ดํ„ฐ ๊ฒ€์ƒ‰ ํ•จ์ˆ˜
def search_qa(query, k=3):
scores, retrieved_examples = data.get_nearest_examples(
"question_embedding", ST.encode(query), k=k
)
return [retrieved_examples["answer"][i] for i in range(k)]
# ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ
def format_prompt(prompt, law_docs, qa_docs):
PROMPT = f"Question: {prompt}\n\nLegal Context:\n"
for doc in law_docs:
PROMPT += f"{doc[0]}\n" # Assuming doc[0] contains the relevant text
PROMPT += "\nLegal QA:\n"
for doc in qa_docs:
PROMPT += f"{doc}\n"
return PROMPT
# ์ฑ—๋ด‡ ์‘๋‹ต ํ•จ์ˆ˜
def talk(prompt, history):
law_results = search_law(prompt, k=3)
qa_results = search_qa(prompt, k=3)
retrieved_law_docs = [result[0] for result in law_results]
formatted_prompt = format_prompt(prompt, retrieved_law_docs, qa_results)
formatted_prompt = formatted_prompt[:2000] # GPU ๋ฉ”๋ชจ๋ฆฌ ๋ถ€์กฑ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กฌํ”„ํŠธ ์ œํ•œ
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
# ๋ชจ๋ธ์—๊ฒŒ ์ƒ์„ฑ ์ง€์‹œ
input_ids = tokenizer(messages, return_tensors="pt").to(model.device).input_ids
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
temperature=0.75,
eos_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
TITLE = "Legal RAG Chatbot"
DESCRIPTION = """A chatbot that uses Retrieval-Augmented Generation (RAG) for legal consultation.
This chatbot can search legal documents and previous legal QA pairs to provide answers."""
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["What are the regulations on data privacy?"]],
title=TITLE,
description=DESCRIPTION,
)
# Gradio ๋ฐ๋ชจ ์‹คํ–‰
demo.launch(debug=True)