Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
3 |
-
|
4 |
import os
|
5 |
-
import spaces
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
7 |
import torch
|
8 |
from threading import Thread
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
-
|
11 |
-
import
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
data = dataset["train"]
|
19 |
-
data = data.add_faiss_index("question", "answer") # column name that has the embeddings of the dataset
|
20 |
|
|
|
|
|
|
|
21 |
|
|
|
22 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
23 |
-
|
24 |
-
# use quantization to lower GPU usage
|
25 |
bnb_config = BitsAndBytesConfig(
|
26 |
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
27 |
)
|
28 |
-
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id,token=token)
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
model_id,
|
32 |
torch_dtype=torch.bfloat16,
|
@@ -34,66 +57,63 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
34 |
quantization_config=bnb_config,
|
35 |
token=token
|
36 |
)
|
37 |
-
terminators = [
|
38 |
-
tokenizer.eos_token_id,
|
39 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
40 |
-
]
|
41 |
|
42 |
-
SYS_PROMPT = """You are an assistant for answering questions.
|
43 |
-
You are given the extracted parts of
|
44 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
def
|
49 |
-
|
50 |
-
|
51 |
-
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
52 |
-
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
|
53 |
-
k=k # get only top k results
|
54 |
)
|
55 |
-
return
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
PROMPT = f"Question:{prompt}\
|
60 |
-
for
|
61 |
-
PROMPT+= f"{
|
|
|
|
|
|
|
62 |
return PROMPT
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
def talk(prompt,history):
|
67 |
-
k = 1 # number of retrieved documents
|
68 |
-
scores , retrieved_documents = search(prompt, k)
|
69 |
-
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
|
70 |
-
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
|
71 |
-
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
72 |
-
# tell the model to generate
|
73 |
input_ids = tokenizer.apply_chat_template(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
).to(model.device)
|
78 |
-
|
79 |
-
input_ids,
|
80 |
-
max_new_tokens=1024,
|
81 |
-
eos_token_id=terminators,
|
82 |
-
do_sample=True,
|
83 |
-
temperature=0.6,
|
84 |
-
top_p=0.9,
|
85 |
-
)
|
86 |
streamer = TextIteratorStreamer(
|
87 |
-
|
88 |
-
|
|
|
89 |
generate_kwargs = dict(
|
90 |
-
input_ids=
|
91 |
streamer=streamer,
|
92 |
max_new_tokens=1024,
|
93 |
do_sample=True,
|
94 |
top_p=0.95,
|
95 |
temperature=0.75,
|
96 |
-
eos_token_id=
|
97 |
)
|
98 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
99 |
t.start()
|
@@ -101,25 +121,16 @@ def talk(prompt,history):
|
|
101 |
outputs = []
|
102 |
for text in streamer:
|
103 |
outputs.append(text)
|
104 |
-
print(outputs)
|
105 |
yield "".join(outputs)
|
106 |
|
107 |
-
|
108 |
-
TITLE = "
|
109 |
|
110 |
DESCRIPTION = """
|
111 |
-
A
|
112 |
-
|
113 |
-
Resources used to build this project :
|
114 |
-
|
115 |
-
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
|
116 |
-
* dataset : https://huggingface.co/datasets/not-lain/wikipedia
|
117 |
-
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index
|
118 |
-
* chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
|
119 |
-
* Full documentation : https://huggingface.co/blog/not-lain/rag-chatbot-using-llama3
|
120 |
"""
|
121 |
|
122 |
-
|
123 |
demo = gr.ChatInterface(
|
124 |
fn=talk,
|
125 |
chatbot=gr.Chatbot(
|
@@ -131,9 +142,11 @@ demo = gr.ChatInterface(
|
|
131 |
bubble_full_width=False,
|
132 |
),
|
133 |
theme="Soft",
|
134 |
-
examples=[["
|
135 |
title=TITLE,
|
136 |
description=DESCRIPTION,
|
137 |
-
|
138 |
)
|
|
|
|
|
139 |
demo.launch(debug=True)
|
|
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
|
|
3 |
import os
|
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
5 |
import torch
|
6 |
from threading import Thread
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
import faiss
|
9 |
+
import fitz # PyMuPDF
|
10 |
+
|
11 |
+
# 환경 변수에서 Hugging Face 토큰 가져오기
|
12 |
+
token = os.environ.get("HF_TOKEN")
|
13 |
+
if not token:
|
14 |
+
raise ValueError("Hugging Face token is missing. Please set it in your environment variables.")
|
15 |
|
16 |
+
# 임베딩 모델 로드
|
17 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
18 |
|
19 |
+
# PDF에서 텍스트 추출
|
20 |
+
def extract_text_from_pdf(pdf_path):
|
21 |
+
doc = fitz.open(pdf_path)
|
22 |
+
text = ""
|
23 |
+
for page in doc:
|
24 |
+
text += page.get_text()
|
25 |
+
return text
|
26 |
+
|
27 |
+
# 법률 문서 PDF 경로 지정 및 텍스트 추출
|
28 |
+
pdf_path = "./pdfs/law.pdf" # 여기에 실제 PDF 경로를 입력하세요.
|
29 |
+
law_text = extract_text_from_pdf(pdf_path)
|
30 |
+
|
31 |
+
# 법률 문서 텍스트를 문장 단위로 나누고 임베딩
|
32 |
+
law_sentences = law_text.split('\n')
|
33 |
+
law_embeddings = ST.encode(law_sentences)
|
34 |
|
35 |
+
# FAISS 인덱스 생성 및 임베딩 추가
|
36 |
+
index = faiss.IndexFlatL2(law_embeddings.shape[1])
|
37 |
+
index.add(law_embeddings)
|
38 |
+
|
39 |
+
# Hugging Face에서 법률 상담 데이터셋 로드
|
40 |
+
dataset = load_dataset("jihye-moon/LawQA-Ko")
|
41 |
data = dataset["train"]
|
|
|
42 |
|
43 |
+
# 질문 컬럼을 임베딩하여 새로운 컬럼에 추가
|
44 |
+
data = data.map(lambda x: {"question_embedding": ST.encode(x["question"])}, batched=True)
|
45 |
+
data.add_faiss_index(column="question_embedding")
|
46 |
|
47 |
+
# LLaMA 모델 설정
|
48 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
|
49 |
bnb_config = BitsAndBytesConfig(
|
50 |
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
51 |
)
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
|
|
53 |
model = AutoModelForCausalLM.from_pretrained(
|
54 |
model_id,
|
55 |
torch_dtype=torch.bfloat16,
|
|
|
57 |
quantization_config=bnb_config,
|
58 |
token=token
|
59 |
)
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
SYS_PROMPT = """You are an assistant for answering legal questions.
|
62 |
+
You are given the extracted parts of legal documents and a question. Provide a conversational answer.
|
63 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
64 |
|
65 |
+
# 법률 문서 검색 함수
|
66 |
+
def search_law(query, k=5):
|
67 |
+
query_embedding = ST.encode([query])
|
68 |
+
D, I = index.search(query_embedding, k)
|
69 |
+
return [(law_sentences[i], D[0][idx]) for idx, i in enumerate(I[0])]
|
70 |
|
71 |
+
# 법률 상담 데이터 검색 함수
|
72 |
+
def search_qa(query, k=3):
|
73 |
+
scores, retrieved_examples = data.get_nearest_examples(
|
74 |
+
"question_embedding", ST.encode(query), k=k
|
|
|
|
|
|
|
75 |
)
|
76 |
+
return [retrieved_examples["answer"][i] for i in range(k)]
|
77 |
+
|
78 |
+
# 최종 프롬프트 생성
|
79 |
+
def format_prompt(prompt, law_docs, qa_docs):
|
80 |
+
PROMPT = f"Question: {prompt}\n\nLegal Context:\n"
|
81 |
+
for doc in law_docs:
|
82 |
+
PROMPT += f"{doc[0]}\n"
|
83 |
+
PROMPT += "\nLegal QA:\n"
|
84 |
+
for doc in qa_docs:
|
85 |
+
PROMPT += f"{doc}\n"
|
86 |
return PROMPT
|
87 |
|
88 |
+
# 챗봇 응답 함수
|
89 |
+
def talk(prompt, history):
|
90 |
+
law_results = search_law(prompt, k=3)
|
91 |
+
qa_results = search_qa(prompt, k=3)
|
92 |
+
|
93 |
+
retrieved_law_docs = [result[0] for result in law_results]
|
94 |
+
formatted_prompt = format_prompt(prompt, retrieved_law_docs, qa_results)
|
95 |
+
formatted_prompt = formatted_prompt[:2000] # GPU 메모리 부족을 피하기 위해 프롬프트 제한
|
96 |
+
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
|
97 |
|
98 |
+
# 모델에게 생성 지시
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
input_ids = tokenizer.apply_chat_template(
|
100 |
+
messages,
|
101 |
+
add_generation_prompt=True,
|
102 |
+
return_tensors="pt"
|
103 |
).to(model.device)
|
104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
streamer = TextIteratorStreamer(
|
106 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
107 |
+
)
|
108 |
+
|
109 |
generate_kwargs = dict(
|
110 |
+
input_ids=input_ids,
|
111 |
streamer=streamer,
|
112 |
max_new_tokens=1024,
|
113 |
do_sample=True,
|
114 |
top_p=0.95,
|
115 |
temperature=0.75,
|
116 |
+
eos_token_id=tokenizer.eos_token_id,
|
117 |
)
|
118 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
119 |
t.start()
|
|
|
121 |
outputs = []
|
122 |
for text in streamer:
|
123 |
outputs.append(text)
|
|
|
124 |
yield "".join(outputs)
|
125 |
|
126 |
+
# Gradio 인터페이스 설정
|
127 |
+
TITLE = "Legal RAG Chatbot"
|
128 |
|
129 |
DESCRIPTION = """
|
130 |
+
A chatbot that uses Retrieval-Augmented Generation (RAG) for legal consultation.
|
131 |
+
This chatbot can search legal documents and previous legal QA pairs to provide answers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
"""
|
133 |
|
|
|
134 |
demo = gr.ChatInterface(
|
135 |
fn=talk,
|
136 |
chatbot=gr.Chatbot(
|
|
|
142 |
bubble_full_width=False,
|
143 |
),
|
144 |
theme="Soft",
|
145 |
+
examples=[["What are the regulations on data privacy?"]],
|
146 |
title=TITLE,
|
147 |
description=DESCRIPTION,
|
|
|
148 |
)
|
149 |
+
|
150 |
+
# Gradio 데모 실행
|
151 |
demo.launch(debug=True)
|
152 |
+
|