import gradio as gr from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import torch from threading import Thread from sentence_transformers import SentenceTransformer import faiss import fitz # PyMuPDF import os # 임베딩 모델 로드 ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # PDF에서 텍스트 추출 def extract_text_from_pdf(pdf_path): doc = fitz.open(pdf_path) text = "" for page in doc: text += page.get_text() return text # 기본 제공 PDF 파일 경로 default_pdf_path = "laws.pdf" # FAISS 인덱스 초기화 index = None law_sentences = [] # 기본 제공 PDF 파일 처리 함수 def process_default_pdf(): global index, law_sentences # PDF에서 텍스트 추출 law_text = extract_text_from_pdf(default_pdf_path) # 문장을 나누고 임베딩 생성 law_sentences = law_text.split('\n') law_embeddings = ST.encode(law_sentences) # FAISS 인덱스 생성 및 임베딩 추가 index = faiss.IndexFlatL2(law_embeddings.shape[1]) index.add(law_embeddings) # 처음에 기본 PDF 파일 처리 process_default_pdf() # 법률 문서 검색 함수 def search_law(query, k=5): query_embedding = ST.encode([query]) D, I = index.search(query_embedding, k) return [(law_sentences[i], D[0][idx]) for idx, i in enumerate(I[0])] # Hugging Face에서 법률 상담 데이터셋 로드 dataset = load_dataset("jihye-moon/LawQA-Ko") data = dataset["train"] # 질문 컬럼을 임베딩하여 새로운 컬럼에 추가 data = data.map(lambda x: {"question_embedding": ST.encode(x["question"])}, batched=True) data.add_faiss_index(column="question_embedding") # LLaMA 모델 설정 model_id = "google/gemma-2-2b-it" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) SYS_PROMPT = """You are an assistant for answering legal questions. You are given the extracted parts of legal documents and a question. Provide a conversational answer. If you don't know the answer, just say "I do not know." Don't make up an answer. you must answer korean. You're a LAWEYE legal advisor bot. Your job is to provide korean legal assistance by asking questions to korean speaker, then offering advice or guidance based on the information and law provisions provided. Make sure you only respond with one question at a time. ... """ # 법률 상담 데이터 검색 함수 def search_qa(query, k=3): scores, retrieved_examples = data.get_nearest_examples( "question_embedding", ST.encode(query), k=k ) return [retrieved_examples["answer"][i] for i in range(k)] # 최종 프롬프트 생성 def format_prompt(prompt, law_docs, qa_docs): PROMPT = f"Question: {prompt}\n\nLegal Context:\n" for doc in law_docs: PROMPT += f"{doc[0]}\n" # Assuming doc[0] contains the relevant text PROMPT += "\nLegal QA:\n" for doc in qa_docs: PROMPT += f"{doc}\n" return PROMPT # 챗봇 응답 함수 def talk(prompt, history): law_results = search_law(prompt, k=3) qa_results = search_qa(prompt, k=3) retrieved_law_docs = [result[0] for result in law_results] formatted_prompt = format_prompt(prompt, retrieved_law_docs, qa_results) formatted_prompt = formatted_prompt[:2000] # GPU 메모리 부족을 피하기 위해 프롬프트 제한 messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}] # 모델에게 생성 지시 input_ids = tokenizer(messages, return_tensors="pt").to(model.device).input_ids streamer = TextIteratorStreamer( tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, temperature=0.75, eos_token_id=tokenizer.eos_token_id, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio 인터페이스 설정 TITLE = "Legal RAG Chatbot" DESCRIPTION = """A chatbot that uses Retrieval-Augmented Generation (RAG) for legal consultation. This chatbot can search legal documents and previous legal QA pairs to provide answers.""" demo = gr.ChatInterface( fn=talk, chatbot=gr.Chatbot( show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble", bubble_full_width=False, ), theme="Soft", examples=[["What are the regulations on data privacy?"]], title=TITLE, description=DESCRIPTION, ) # Gradio 데모 실행 demo.launch(debug=True)