Spaces:
Runtime error
Runtime error
Upload streamlit_app.py
Browse files- streamlit_app.py +128 -0
streamlit_app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('git clone --recursive https://github.com/dmlc/xgboost')
|
3 |
+
os.system('cd xgboost')
|
4 |
+
os.system('sudo cp make/minimum.mk ./config.mk;')
|
5 |
+
os.system('sudo make -j4;')
|
6 |
+
os.system('sh build.sh')
|
7 |
+
os.system('cd python-package')
|
8 |
+
os.system('python setup.py install')
|
9 |
+
os.system('pip install graphviz')
|
10 |
+
os.system('pip install python-pydot')
|
11 |
+
os.system('pip install python-pydot-ng')
|
12 |
+
os.system('pip install -U scikit-learn scipy matplotlib')
|
13 |
+
|
14 |
+
from collections import namedtuple
|
15 |
+
import altair as alt
|
16 |
+
import math
|
17 |
+
import streamlit as st
|
18 |
+
import pandas
|
19 |
+
import numpy
|
20 |
+
import xgboost
|
21 |
+
import graphviz
|
22 |
+
from sklearn.metrics import mean_squared_error
|
23 |
+
from sklearn.model_selection import train_test_split
|
24 |
+
import matplotlib.pyplot
|
25 |
+
|
26 |
+
"""
|
27 |
+
# MLOPS
|
28 |
+
"""
|
29 |
+
|
30 |
+
|
31 |
+
max_depth_input = st.slider("Max depth", 1, 100, 5)
|
32 |
+
colsample_bytree_input = st.slider("Colsample bytree", 0.0, 1.0, 0.5)
|
33 |
+
learning_rate_input = st.slider("Learning rate", 0.0, 1.0, 0.2)
|
34 |
+
alpha_input = st.slider("Alpha", 1, 100, 10)
|
35 |
+
n_estimators_input = st.slider("n estimators", 1, 100, 20)
|
36 |
+
city_input = st.selectbox(
|
37 |
+
'Which city do you want to predict rain ?',
|
38 |
+
("Canberra",
|
39 |
+
"Albury",
|
40 |
+
"Penrith",
|
41 |
+
"Sydney",
|
42 |
+
"MountGinini",
|
43 |
+
"Bendigo",
|
44 |
+
"Brisbane",
|
45 |
+
"Portland"), index=0)
|
46 |
+
|
47 |
+
dataset = pandas.read_csv('weatherAUS.csv')
|
48 |
+
|
49 |
+
location_dataset = dataset["Location"].unique()
|
50 |
+
wind_dataset = dataset["WindGustDir"].unique()
|
51 |
+
date_dataset = dataset["Date"].unique()
|
52 |
+
|
53 |
+
dataset.drop(dataset.loc[dataset['Location'] != city_input].index, inplace=True)
|
54 |
+
|
55 |
+
i_RainTomorrow = dataset.columns.get_loc("RainTomorrow")
|
56 |
+
#i_Location = dataset.columns.get_loc("Location")
|
57 |
+
i_WindGustDir = dataset.columns.get_loc("WindGustDir")
|
58 |
+
i_Date = dataset.columns.get_loc("Date")
|
59 |
+
yes = dataset.iat[8, dataset.columns.get_loc("RainTomorrow")]
|
60 |
+
no = dataset.iat[0, dataset.columns.get_loc("RainTomorrow")]
|
61 |
+
|
62 |
+
for i in range(len(dataset)):
|
63 |
+
if (dataset.iat[i, i_RainTomorrow] == yes):
|
64 |
+
dataset.iat[i, i_RainTomorrow] = True
|
65 |
+
else:
|
66 |
+
dataset.iat[i, i_RainTomorrow] = False
|
67 |
+
#dataset.iat[i, i_Location] = numpy.where(location_dataset == dataset.iat[i, i_Location])[0][0]
|
68 |
+
if (pandas.isna(dataset.iat[i, i_WindGustDir])):
|
69 |
+
dataset.iat[i, i_WindGustDir] = 0
|
70 |
+
else:
|
71 |
+
dataset.iat[i, i_WindGustDir] = numpy.where(wind_dataset == dataset.iat[i, i_WindGustDir])[0][0] + 1
|
72 |
+
dataset.iat[i, i_Date] = numpy.where(date_dataset == dataset.iat[i, i_Date])[0][0]
|
73 |
+
|
74 |
+
|
75 |
+
dataset = dataset.astype({'RainTomorrow': 'bool'})
|
76 |
+
#dataset = dataset.astype({'Location': 'int'})
|
77 |
+
dataset = dataset.astype({'WindGustDir': 'int'})
|
78 |
+
dataset = dataset.astype({'Date': 'int'})
|
79 |
+
|
80 |
+
dataset.drop(columns=["WindDir9am", "WindDir3pm", "WindSpeed9am", "WindSpeed3pm", "Temp9am", "Temp3pm", "RainToday"], inplace=True)
|
81 |
+
dataset.drop(dataset.index[dataset.isnull().any(axis=1)], 0, inplace=True)
|
82 |
+
|
83 |
+
dataset["Humidity"] = 0.0
|
84 |
+
dataset["Pressure"] = 0.0
|
85 |
+
dataset["Cloud"] = 0.0
|
86 |
+
|
87 |
+
for i in dataset.index:
|
88 |
+
humidity = (dataset["Humidity9am"][i] + dataset["Humidity3pm"][i]) / 2
|
89 |
+
dataset.at[i, "Humidity"] = humidity
|
90 |
+
pressure = (dataset["Pressure9am"][i] + dataset["Pressure3pm"][i]) / 2
|
91 |
+
dataset.at[i, "Pressure"] = pressure
|
92 |
+
cloud = (dataset["Cloud9am"][i] + dataset["Cloud3pm"][i]) / 2
|
93 |
+
dataset.at[i, "Cloud"] = cloud
|
94 |
+
|
95 |
+
dataset.drop(columns=["Humidity9am", "Humidity3pm", "Pressure9am", "Pressure3pm", "Cloud9am", "Cloud3pm"], inplace=True)
|
96 |
+
|
97 |
+
x, y = dataset.iloc[:,[False, False, True, True, False, True, True, True, True, True, True, True, True]],dataset.iloc[:,4]
|
98 |
+
|
99 |
+
data_dmatrix = xgboost.DMatrix(data=x,label=y)
|
100 |
+
|
101 |
+
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123)
|
102 |
+
|
103 |
+
xg_reg = xgboost.XGBRegressor(colsample_bytree = colsample_bytree_input, learning_rate = learning_rate_input, max_depth = max_depth_input, alpha = alpha_input, n_estimators = n_estimators_input)
|
104 |
+
|
105 |
+
xg_reg.fit(X_train,y_train)
|
106 |
+
|
107 |
+
preds = xg_reg.predict(X_test)
|
108 |
+
|
109 |
+
rmse = numpy.sqrt(mean_squared_error(y_test, preds))
|
110 |
+
st.write("RMSE: %f" % (rmse))
|
111 |
+
|
112 |
+
params = {'colsample_bytree': colsample_bytree_input,'learning_rate': learning_rate_input,
|
113 |
+
'max_depth': max_depth_input, 'alpha': alpha_input}
|
114 |
+
|
115 |
+
cv_results = xgboost.cv(dtrain=data_dmatrix, params=params, nfold=3,
|
116 |
+
num_boost_round=50,early_stopping_rounds=10,metrics="rmse", as_pandas=True, seed=123)
|
117 |
+
|
118 |
+
st.write((cv_results["test-rmse-mean"]).tail(1))
|
119 |
+
|
120 |
+
xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10)
|
121 |
+
|
122 |
+
#xgboost.plot_tree(xg_reg,num_trees=0)
|
123 |
+
#matplotlib.pyplot.rcParams['figure.figsize'] = [200, 200]
|
124 |
+
#matplotlib.pyplot.show()
|
125 |
+
|
126 |
+
#xgboost.plot_importance(xg_reg)
|
127 |
+
#matplotlib.pyplot.rcParams['figure.figsize'] = [5, 5]
|
128 |
+
#matplotlib.pyplot.show()
|