import os os.system('git clone --recursive https://github.com/dmlc/xgboost') os.system('cd xgboost') os.system('sudo cp make/minimum.mk ./config.mk;') os.system('sudo make -j4;') os.system('sh build.sh') os.system('cd python-package') os.system('python setup.py install') os.system('pip install graphviz') os.system('pip install python-pydot') os.system('pip install python-pydot-ng') os.system('pip install -U scikit-learn scipy matplotlib') from collections import namedtuple import altair as alt import math import streamlit as st import pandas import numpy import xgboost import graphviz from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import matplotlib.pyplot """ # MLOPS """ max_depth_input = st.slider("Max depth", 1, 100, 5) colsample_bytree_input = st.slider("Colsample bytree", 0.0, 1.0, 0.5) learning_rate_input = st.slider("Learning rate", 0.0, 1.0, 0.2) alpha_input = st.slider("Alpha", 1, 100, 10) n_estimators_input = st.slider("n estimators", 1, 100, 20) city_input = st.selectbox( 'Which city do you want to predict rain ?', ("Canberra", "Albury", "Penrith", "Sydney", "MountGinini", "Bendigo", "Brisbane", "Portland"), index=0) dataset = pandas.read_csv('weatherAUS.csv') location_dataset = dataset["Location"].unique() wind_dataset = dataset["WindGustDir"].unique() date_dataset = dataset["Date"].unique() dataset.drop(dataset.loc[dataset['Location'] != city_input].index, inplace=True) i_RainTomorrow = dataset.columns.get_loc("RainTomorrow") #i_Location = dataset.columns.get_loc("Location") i_WindGustDir = dataset.columns.get_loc("WindGustDir") i_Date = dataset.columns.get_loc("Date") yes = dataset.iat[8, dataset.columns.get_loc("RainTomorrow")] no = dataset.iat[0, dataset.columns.get_loc("RainTomorrow")] for i in range(len(dataset)): if (dataset.iat[i, i_RainTomorrow] == yes): dataset.iat[i, i_RainTomorrow] = True else: dataset.iat[i, i_RainTomorrow] = False #dataset.iat[i, i_Location] = numpy.where(location_dataset == dataset.iat[i, i_Location])[0][0] if (pandas.isna(dataset.iat[i, i_WindGustDir])): dataset.iat[i, i_WindGustDir] = 0 else: dataset.iat[i, i_WindGustDir] = numpy.where(wind_dataset == dataset.iat[i, i_WindGustDir])[0][0] + 1 dataset.iat[i, i_Date] = numpy.where(date_dataset == dataset.iat[i, i_Date])[0][0] dataset = dataset.astype({'RainTomorrow': 'bool'}) #dataset = dataset.astype({'Location': 'int'}) dataset = dataset.astype({'WindGustDir': 'int'}) dataset = dataset.astype({'Date': 'int'}) dataset.drop(columns=["WindDir9am", "WindDir3pm", "WindSpeed9am", "WindSpeed3pm", "Temp9am", "Temp3pm", "RainToday"], inplace=True) dataset.drop(dataset.index[dataset.isnull().any(axis=1)], 0, inplace=True) dataset["Humidity"] = 0.0 dataset["Pressure"] = 0.0 dataset["Cloud"] = 0.0 for i in dataset.index: humidity = (dataset["Humidity9am"][i] + dataset["Humidity3pm"][i]) / 2 dataset.at[i, "Humidity"] = humidity pressure = (dataset["Pressure9am"][i] + dataset["Pressure3pm"][i]) / 2 dataset.at[i, "Pressure"] = pressure cloud = (dataset["Cloud9am"][i] + dataset["Cloud3pm"][i]) / 2 dataset.at[i, "Cloud"] = cloud dataset.drop(columns=["Humidity9am", "Humidity3pm", "Pressure9am", "Pressure3pm", "Cloud9am", "Cloud3pm"], inplace=True) x, y = dataset.iloc[:,[False, False, True, True, False, True, True, True, True, True, True, True, True]],dataset.iloc[:,4] data_dmatrix = xgboost.DMatrix(data=x,label=y) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123) xg_reg = xgboost.XGBRegressor(colsample_bytree = colsample_bytree_input, learning_rate = learning_rate_input, max_depth = max_depth_input, alpha = alpha_input, n_estimators = n_estimators_input) xg_reg.fit(X_train,y_train) preds = xg_reg.predict(X_test) rmse = numpy.sqrt(mean_squared_error(y_test, preds)) st.write("RMSE: %f" % (rmse)) params = {'colsample_bytree': colsample_bytree_input,'learning_rate': learning_rate_input, 'max_depth': max_depth_input, 'alpha': alpha_input} cv_results = xgboost.cv(dtrain=data_dmatrix, params=params, nfold=3, num_boost_round=50,early_stopping_rounds=10,metrics="rmse", as_pandas=True, seed=123) st.write((cv_results["test-rmse-mean"]).tail(1)) xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10) #xgboost.plot_tree(xg_reg,num_trees=0) #matplotlib.pyplot.rcParams['figure.figsize'] = [200, 200] #matplotlib.pyplot.show() #xgboost.plot_importance(xg_reg) #matplotlib.pyplot.rcParams['figure.figsize'] = [5, 5] #matplotlib.pyplot.show()