Spaces:
Sleeping
Sleeping
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
from PIL import Image, ImageDraw | |
import gradio as gr | |
import requests | |
import random | |
def detect_objects(image): | |
# Load the pre-trained DETR model | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# convert outputs (bounding boxes and class logits) to COCO API | |
# let's only keep detections with score > 0.9 | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
# Draw bounding boxes and labels on the image | |
draw = ImageDraw.Draw(image) | |
for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])): | |
box = [round(i, 2) for i in box.tolist()] | |
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) | |
draw.rectangle(box, outline=color, width=3) | |
draw.text((box[0], box[1]), model.config.id2label[label.item()], fill=color) | |
return image | |
def upload_image(file): | |
image = Image.open(file.name) | |
image_with_boxes = detect_objects(image) | |
return image_with_boxes | |
iface = gr.Interface( | |
fn=upload_image, | |
inputs="file", | |
outputs="image", | |
title="Object Detection", | |
description="Upload an image and detect objects using DETR model.", | |
allow_flagging=False | |
) | |
iface.launch() | |