Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import tensorflow as tf
|
6 |
+
import numpy as np
|
7 |
+
from keras.models import load_model
|
8 |
+
from tensorflow.keras.utils import load_img
|
9 |
+
|
10 |
+
# Charger le modèle
|
11 |
+
|
12 |
+
model = load_model('model_multi.h5')
|
13 |
+
|
14 |
+
|
15 |
+
def format_decimal(value):
|
16 |
+
decimal_value = format(value, ".2f")
|
17 |
+
return decimal_value
|
18 |
+
|
19 |
+
def detect(img):
|
20 |
+
img = np.expand_dims(img, axis=0)
|
21 |
+
img = img/255
|
22 |
+
prediction = model.predict(img)[0]
|
23 |
+
# if prediction[0] <= 0.80:
|
24 |
+
# return "Pneumonia Detected!"
|
25 |
+
|
26 |
+
# return "Pneumonia Not Detected!"
|
27 |
+
if format_decimal(prediction[0]) >= "0.5":
|
28 |
+
return "Risque d'infection bactérienne"
|
29 |
+
if format_decimal(prediction[1]) >= "0.5":
|
30 |
+
return "Poumon sain"
|
31 |
+
if format_decimal(prediction[2]) >= "0.5":
|
32 |
+
return "Risque d'infection biologique"
|
33 |
+
|
34 |
+
|
35 |
+
# result = detect(img)
|
36 |
+
# print(result)
|
37 |
+
os.system("tar -zxvf examples.tar.gz")
|
38 |
+
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
|
39 |
+
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',]
|
40 |
+
|
41 |
+
input = gr.inputs.Image(shape=(100,100))
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
title = "PneumoDetect: Pneumonia Detection from Chest X-Rays"
|
46 |
+
|
47 |
+
iface = gr.Interface(fn=detect, inputs=input, outputs="text",examples = examples, examples_per_page=20, title=title)
|
48 |
+
iface.launch(inline=False)
|