Ali Kadhim commited on
Commit
5125c41
·
2 Parent(s): 857b9b1 8377e05

Merge branch 'main' of https://github.com/AI-Maker-Space/Beyond-ChatGPT

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md CHANGED
@@ -1,2 +1,66 @@
1
  # Beyond-ChatGPT
2
  Chainlit App using Python streaming for Level 0 MLOps
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Beyond-ChatGPT
2
  Chainlit App using Python streaming for Level 0 MLOps
3
+
4
+ LLM Application with Chainlit, Docker, and Huggingface Spaces
5
+ In this guide, we'll walk you through the steps to create a Language Learning Model (LLM) application using Chainlit, then containerize it using Docker, and finally deploy it on Huggingface Spaces.
6
+
7
+ Prerequisites
8
+ A GitHub account
9
+ Docker installed on your local machine
10
+ A Huggingface Spaces account
11
+
12
+ ### Building our App
13
+ Clone this repo
14
+
15
+ Navigate inside this repo
16
+
17
+ ### Install requirements using `pip install -r requirements.txt`?????????
18
+
19
+ Add your OpenAI Key to `.env` file and save the file.
20
+
21
+ Let's try deploying it locally. Make sure you're in the python environment where you installed Chainlit and OpenAI.
22
+
23
+ Run the app using Chainlit
24
+
25
+ ```
26
+ chainlit run app.py -w
27
+ ```
28
+
29
+ Great work! Let's see if we can interact with our chatbot.
30
+
31
+ It works! Let's ship it!
32
+
33
+
34
+ ### Deploy to Huggingface Spaces
35
+
36
+ Login to Huggingface Spaces CLI
37
+
38
+ ``` bash
39
+ huggingface-cli login
40
+ ```
41
+
42
+ Follow the prompts to authenticate.
43
+
44
+
45
+
46
+ Push Docker Image to Huggingface Container Registry
47
+
48
+ ```
49
+ docker tag llm-app:latest huggingface/your-username/llm-app:latest
50
+ docker push huggingface/your-username/llm-app:latest
51
+ ```
52
+
53
+ Deploy to Huggingface Spaces
54
+
55
+
56
+ Deploying on Huggingface Spaces using a custom Docker image involves using their web interface. Go to Huggingface Spaces and create a new space, then set it up to use your Docker image from the Huggingface Container Registry.
57
+
58
+ Access the Application
59
+
60
+ Once deployed, access your app at:
61
+
62
+ ruby
63
+ Copy code
64
+ https://huggingface.co/spaces/your-username/llm-app
65
+ Conclusion
66
+ You've successfully created an LLM application with Chainlit, containerized it with Docker, and deployed it on Huggingface Spaces. Visit the link to interact with your deployed application.