import ctranslate2 import transformers from huggingface_hub import snapshot_download model_dir = snapshot_download(repo_id="Praise2112/Mistral-7B-Instruct-v0.1-int8-ct2") generator = ctranslate2.Generator(model_dir, device="cuda", compute_type="int8") # GPU # generator = ctranslate2.Generator(model_dir, device="cpu", compute_type="int8") #CPU tokenizer = transformers.AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = [tokenizer.convert_ids_to_tokens(model_input) for model_input in model_inputs] generated_ids = generator.generate_batch(model_inputs, max_length=1000, sampling_topk=10) decoded = [res.sequences_ids[0] for res in generated_ids] decoded = tokenizer.batch_decode(decoded) print(decoded[0]) # def speak(prompt): # # Tokenizar el prompt y convertirlo a tensores de PyTorch, luego enviarlos al dispositivo especificado # model_inputs = tokenizer([prompt], return_tensors="pt").to(device) # model.to(device) # # Generar texto condicionalmente a partir del prompt utilizando el modelo # generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) # # Decodificar los identificadores generados en texto y imprimir el resultado # resulting_text = tokenizer.batch_decode(generated_ids)[0] # return resulting_text # iface = gr.Interface(fn=speak, inputs="text", outputs="text") # iface.launch()