Spaces:
Runtime error
Runtime error
Esmail-AGumaan
commited on
Commit
•
8182f5b
1
Parent(s):
ca5cb45
Update clip.py
Browse files
clip.py
CHANGED
@@ -1,64 +1,64 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
from
|
5 |
-
|
6 |
-
class CLIPEmbedding(nn.Module):
|
7 |
-
def __init__(self, n_vocab: int, n_embd: int, n_token: int):
|
8 |
-
super().__init__()
|
9 |
-
|
10 |
-
self.token_embedding = nn.Embedding(n_vocab, n_embd)
|
11 |
-
self.position_embedding = nn.Parameter(torch.zeros((n_token, n_embd)))
|
12 |
-
|
13 |
-
def forward(self, tokens):
|
14 |
-
x = self.token_embedding(tokens)
|
15 |
-
x += self.position_embedding
|
16 |
-
|
17 |
-
return x
|
18 |
-
|
19 |
-
class CLIPLayer(nn.Module):
|
20 |
-
def __init__(self, n_head: int, n_embd: int):
|
21 |
-
super().__init__()
|
22 |
-
self.layernorm_1 = nn.LayerNorm(n_embd)
|
23 |
-
self.attention = SelfAttention(n_head, n_embd)
|
24 |
-
self.layernorm_2 = nn.LayerNorm(n_embd)
|
25 |
-
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
|
26 |
-
self.linear_2 = nn.Linear(4 * n_embd, n_embd)
|
27 |
-
|
28 |
-
def forward(self, x):
|
29 |
-
residue = x
|
30 |
-
x = self.layernorm_1(x)
|
31 |
-
x = self.attention(x, causal_mask=True)
|
32 |
-
x += residue
|
33 |
-
|
34 |
-
residue = x
|
35 |
-
x = self.layernorm_2(x)
|
36 |
-
x = self.linear_1(x)
|
37 |
-
|
38 |
-
x = x * torch.sigmoid(1.702 * x)
|
39 |
-
x = self.linear_2(x)
|
40 |
-
x += residue
|
41 |
-
|
42 |
-
return x
|
43 |
-
|
44 |
-
class CLIP(nn.Module):
|
45 |
-
def __init__(self):
|
46 |
-
super().__init__()
|
47 |
-
self.embedding = CLIPEmbedding(49408, 768, 77)
|
48 |
-
|
49 |
-
self.layers = nn.ModuleList([
|
50 |
-
CLIPLayer(12, 768) for i in range(12)
|
51 |
-
])
|
52 |
-
|
53 |
-
self.layernorm = nn.LayerNorm(768)
|
54 |
-
|
55 |
-
def forward(self, tokens: torch.LongTensor) -> torch.FloatTensor:
|
56 |
-
tokens = tokens.type(torch.long)
|
57 |
-
|
58 |
-
state = self.embedding(tokens)
|
59 |
-
|
60 |
-
for layer in self.layers:
|
61 |
-
state = layer(state)
|
62 |
-
output = self.layernorm(state)
|
63 |
-
|
64 |
return output
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from attention import SelfAttention
|
5 |
+
|
6 |
+
class CLIPEmbedding(nn.Module):
|
7 |
+
def __init__(self, n_vocab: int, n_embd: int, n_token: int):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
self.token_embedding = nn.Embedding(n_vocab, n_embd)
|
11 |
+
self.position_embedding = nn.Parameter(torch.zeros((n_token, n_embd)))
|
12 |
+
|
13 |
+
def forward(self, tokens):
|
14 |
+
x = self.token_embedding(tokens)
|
15 |
+
x += self.position_embedding
|
16 |
+
|
17 |
+
return x
|
18 |
+
|
19 |
+
class CLIPLayer(nn.Module):
|
20 |
+
def __init__(self, n_head: int, n_embd: int):
|
21 |
+
super().__init__()
|
22 |
+
self.layernorm_1 = nn.LayerNorm(n_embd)
|
23 |
+
self.attention = SelfAttention(n_head, n_embd)
|
24 |
+
self.layernorm_2 = nn.LayerNorm(n_embd)
|
25 |
+
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
|
26 |
+
self.linear_2 = nn.Linear(4 * n_embd, n_embd)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
residue = x
|
30 |
+
x = self.layernorm_1(x)
|
31 |
+
x = self.attention(x, causal_mask=True)
|
32 |
+
x += residue
|
33 |
+
|
34 |
+
residue = x
|
35 |
+
x = self.layernorm_2(x)
|
36 |
+
x = self.linear_1(x)
|
37 |
+
|
38 |
+
x = x * torch.sigmoid(1.702 * x)
|
39 |
+
x = self.linear_2(x)
|
40 |
+
x += residue
|
41 |
+
|
42 |
+
return x
|
43 |
+
|
44 |
+
class CLIP(nn.Module):
|
45 |
+
def __init__(self):
|
46 |
+
super().__init__()
|
47 |
+
self.embedding = CLIPEmbedding(49408, 768, 77)
|
48 |
+
|
49 |
+
self.layers = nn.ModuleList([
|
50 |
+
CLIPLayer(12, 768) for i in range(12)
|
51 |
+
])
|
52 |
+
|
53 |
+
self.layernorm = nn.LayerNorm(768)
|
54 |
+
|
55 |
+
def forward(self, tokens: torch.LongTensor) -> torch.FloatTensor:
|
56 |
+
tokens = tokens.type(torch.long)
|
57 |
+
|
58 |
+
state = self.embedding(tokens)
|
59 |
+
|
60 |
+
for layer in self.layers:
|
61 |
+
state = layer(state)
|
62 |
+
output = self.layernorm(state)
|
63 |
+
|
64 |
return output
|