Spaces:
Runtime error
Runtime error
Esmail-AGumaan
commited on
Commit
•
a8ff063
1
Parent(s):
dd7cfee
Update pipeline.py
Browse files- pipeline.py +141 -141
pipeline.py
CHANGED
@@ -1,141 +1,141 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from tqdm import tqdm
|
4 |
-
from
|
5 |
-
|
6 |
-
WIDTH = 512
|
7 |
-
HEIGHT = 512
|
8 |
-
LATENTS_WIDTH = WIDTH // 8
|
9 |
-
LATENTS_HEIGHT = HEIGHT // 8
|
10 |
-
|
11 |
-
def generate(
|
12 |
-
prompt,
|
13 |
-
uncond_prompt=None,
|
14 |
-
input_image=None,
|
15 |
-
strength=0.8,
|
16 |
-
do_cfg=True,
|
17 |
-
cfg_scale=7.5,
|
18 |
-
sampler_name="ddpm",
|
19 |
-
n_inference_steps=50,
|
20 |
-
models={},
|
21 |
-
seed=None,
|
22 |
-
device=None,
|
23 |
-
idle_device=None,
|
24 |
-
tokenizer=None,
|
25 |
-
):
|
26 |
-
with torch.no_grad():
|
27 |
-
if not 0 < strength <= 1:
|
28 |
-
raise ValueError("strength must be between 0 and 1")
|
29 |
-
|
30 |
-
if idle_device:
|
31 |
-
to_idle = lambda x: x.to(idle_device)
|
32 |
-
else:
|
33 |
-
to_idle = lambda x: x
|
34 |
-
|
35 |
-
generator = torch.Generator(device=device)
|
36 |
-
if seed is None:
|
37 |
-
generator.seed()
|
38 |
-
else:
|
39 |
-
generator.manual_seed(seed)
|
40 |
-
|
41 |
-
clip = models["clip"]
|
42 |
-
clip.to(device)
|
43 |
-
|
44 |
-
if do_cfg:
|
45 |
-
cond_tokens = tokenizer.batch_encode_plus(
|
46 |
-
[prompt], padding="max_length", max_length=77
|
47 |
-
).input_ids
|
48 |
-
cond_tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device)
|
49 |
-
cond_context = clip(cond_tokens)
|
50 |
-
uncond_tokens = tokenizer.batch_encode_plus(
|
51 |
-
[uncond_prompt], padding="max_length", max_length=77
|
52 |
-
).input_ids
|
53 |
-
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)
|
54 |
-
uncond_context = clip(uncond_tokens)
|
55 |
-
context = torch.cat([cond_context, uncond_context])
|
56 |
-
else:
|
57 |
-
tokens = tokenizer.batch_encode_plus(
|
58 |
-
[prompt], padding="max_length", max_length=77
|
59 |
-
).input_ids
|
60 |
-
tokens = torch.tensor(tokens, dtype=torch.long, device=device)
|
61 |
-
context = clip(tokens)
|
62 |
-
to_idle(clip)
|
63 |
-
|
64 |
-
if sampler_name == "ddpm":
|
65 |
-
sampler = DDPMSampler(generator)
|
66 |
-
sampler.set_inference_timesteps(n_inference_steps)
|
67 |
-
else:
|
68 |
-
raise ValueError("Unknown sampler value %s. ")
|
69 |
-
|
70 |
-
latents_shape = (1, 4, LATENTS_HEIGHT, LATENTS_WIDTH)
|
71 |
-
|
72 |
-
if input_image:
|
73 |
-
encoder = models["encoder"]
|
74 |
-
encoder.to(device)
|
75 |
-
|
76 |
-
input_image_tensor = input_image.resize((WIDTH, HEIGHT))
|
77 |
-
input_image_tensor = np.array(input_image_tensor)
|
78 |
-
input_image_tensor = torch.tensor(input_image_tensor, dtype=torch.float32, device=device)
|
79 |
-
input_image_tensor = rescale(input_image_tensor, (0, 255), (-1, 1))
|
80 |
-
input_image_tensor = input_image_tensor.unsqueeze(0)
|
81 |
-
input_image_tensor = input_image_tensor.permute(0, 3, 1, 2)
|
82 |
-
|
83 |
-
encoder_noise = torch.randn(latents_shape, generator=generator, device=device)
|
84 |
-
latents = encoder(input_image_tensor, encoder_noise)
|
85 |
-
|
86 |
-
sampler.set_strength(strength=strength)
|
87 |
-
latents = sampler.add_noise(latents, sampler.timesteps[0])
|
88 |
-
|
89 |
-
to_idle(encoder)
|
90 |
-
else:
|
91 |
-
latents = torch.randn(latents_shape, generator=generator, device=device)
|
92 |
-
|
93 |
-
diffusion = models["diffusion"]
|
94 |
-
diffusion.to(device)
|
95 |
-
|
96 |
-
timesteps = tqdm(sampler.timesteps)
|
97 |
-
for i, timestep in enumerate(timesteps):
|
98 |
-
time_embedding = get_time_embedding(timestep).to(device)
|
99 |
-
|
100 |
-
model_input = latents
|
101 |
-
|
102 |
-
if do_cfg:
|
103 |
-
model_input = model_input.repeat(2, 1, 1, 1)
|
104 |
-
|
105 |
-
model_output = diffusion(model_input, context, time_embedding)
|
106 |
-
|
107 |
-
if do_cfg:
|
108 |
-
output_cond, output_uncond = model_output.chunk(2)
|
109 |
-
model_output = cfg_scale * (output_cond - output_uncond) + output_uncond
|
110 |
-
|
111 |
-
latents = sampler.step(timestep, latents, model_output)
|
112 |
-
|
113 |
-
to_idle(diffusion)
|
114 |
-
|
115 |
-
decoder = models["decoder"]
|
116 |
-
decoder.to(device)
|
117 |
-
images = decoder(latents)
|
118 |
-
to_idle(decoder)
|
119 |
-
|
120 |
-
images = rescale(images, (-1, 1), (0, 255), clamp=True)
|
121 |
-
images = images.permute(0, 2, 3, 1)
|
122 |
-
images = images.to("cpu", torch.uint8).numpy()
|
123 |
-
return images[0]
|
124 |
-
|
125 |
-
def rescale(x, old_range, new_range, clamp=False):
|
126 |
-
old_min, old_max = old_range
|
127 |
-
new_min, new_max = new_range
|
128 |
-
x -= old_min
|
129 |
-
x *= (new_max - new_min) / (old_max - old_min)
|
130 |
-
x += new_min
|
131 |
-
if clamp:
|
132 |
-
x = x.clamp(new_min, new_max)
|
133 |
-
return x
|
134 |
-
|
135 |
-
def get_time_embedding(timestep):
|
136 |
-
# Shape: (160,)
|
137 |
-
freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32) / 160)
|
138 |
-
# Shape: (1, 160)
|
139 |
-
x = torch.tensor([timestep], dtype=torch.float32)[:, None] * freqs[None]
|
140 |
-
# Shape: (1, 160 * 2)
|
141 |
-
return torch.cat([torch.cos(x), torch.sin(x)], dim=-1)
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from tqdm import tqdm
|
4 |
+
from ddpm import DDPMSampler
|
5 |
+
|
6 |
+
WIDTH = 512
|
7 |
+
HEIGHT = 512
|
8 |
+
LATENTS_WIDTH = WIDTH // 8
|
9 |
+
LATENTS_HEIGHT = HEIGHT // 8
|
10 |
+
|
11 |
+
def generate(
|
12 |
+
prompt,
|
13 |
+
uncond_prompt=None,
|
14 |
+
input_image=None,
|
15 |
+
strength=0.8,
|
16 |
+
do_cfg=True,
|
17 |
+
cfg_scale=7.5,
|
18 |
+
sampler_name="ddpm",
|
19 |
+
n_inference_steps=50,
|
20 |
+
models={},
|
21 |
+
seed=None,
|
22 |
+
device=None,
|
23 |
+
idle_device=None,
|
24 |
+
tokenizer=None,
|
25 |
+
):
|
26 |
+
with torch.no_grad():
|
27 |
+
if not 0 < strength <= 1:
|
28 |
+
raise ValueError("strength must be between 0 and 1")
|
29 |
+
|
30 |
+
if idle_device:
|
31 |
+
to_idle = lambda x: x.to(idle_device)
|
32 |
+
else:
|
33 |
+
to_idle = lambda x: x
|
34 |
+
|
35 |
+
generator = torch.Generator(device=device)
|
36 |
+
if seed is None:
|
37 |
+
generator.seed()
|
38 |
+
else:
|
39 |
+
generator.manual_seed(seed)
|
40 |
+
|
41 |
+
clip = models["clip"]
|
42 |
+
clip.to(device)
|
43 |
+
|
44 |
+
if do_cfg:
|
45 |
+
cond_tokens = tokenizer.batch_encode_plus(
|
46 |
+
[prompt], padding="max_length", max_length=77
|
47 |
+
).input_ids
|
48 |
+
cond_tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device)
|
49 |
+
cond_context = clip(cond_tokens)
|
50 |
+
uncond_tokens = tokenizer.batch_encode_plus(
|
51 |
+
[uncond_prompt], padding="max_length", max_length=77
|
52 |
+
).input_ids
|
53 |
+
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)
|
54 |
+
uncond_context = clip(uncond_tokens)
|
55 |
+
context = torch.cat([cond_context, uncond_context])
|
56 |
+
else:
|
57 |
+
tokens = tokenizer.batch_encode_plus(
|
58 |
+
[prompt], padding="max_length", max_length=77
|
59 |
+
).input_ids
|
60 |
+
tokens = torch.tensor(tokens, dtype=torch.long, device=device)
|
61 |
+
context = clip(tokens)
|
62 |
+
to_idle(clip)
|
63 |
+
|
64 |
+
if sampler_name == "ddpm":
|
65 |
+
sampler = DDPMSampler(generator)
|
66 |
+
sampler.set_inference_timesteps(n_inference_steps)
|
67 |
+
else:
|
68 |
+
raise ValueError("Unknown sampler value %s. ")
|
69 |
+
|
70 |
+
latents_shape = (1, 4, LATENTS_HEIGHT, LATENTS_WIDTH)
|
71 |
+
|
72 |
+
if input_image:
|
73 |
+
encoder = models["encoder"]
|
74 |
+
encoder.to(device)
|
75 |
+
|
76 |
+
input_image_tensor = input_image.resize((WIDTH, HEIGHT))
|
77 |
+
input_image_tensor = np.array(input_image_tensor)
|
78 |
+
input_image_tensor = torch.tensor(input_image_tensor, dtype=torch.float32, device=device)
|
79 |
+
input_image_tensor = rescale(input_image_tensor, (0, 255), (-1, 1))
|
80 |
+
input_image_tensor = input_image_tensor.unsqueeze(0)
|
81 |
+
input_image_tensor = input_image_tensor.permute(0, 3, 1, 2)
|
82 |
+
|
83 |
+
encoder_noise = torch.randn(latents_shape, generator=generator, device=device)
|
84 |
+
latents = encoder(input_image_tensor, encoder_noise)
|
85 |
+
|
86 |
+
sampler.set_strength(strength=strength)
|
87 |
+
latents = sampler.add_noise(latents, sampler.timesteps[0])
|
88 |
+
|
89 |
+
to_idle(encoder)
|
90 |
+
else:
|
91 |
+
latents = torch.randn(latents_shape, generator=generator, device=device)
|
92 |
+
|
93 |
+
diffusion = models["diffusion"]
|
94 |
+
diffusion.to(device)
|
95 |
+
|
96 |
+
timesteps = tqdm(sampler.timesteps)
|
97 |
+
for i, timestep in enumerate(timesteps):
|
98 |
+
time_embedding = get_time_embedding(timestep).to(device)
|
99 |
+
|
100 |
+
model_input = latents
|
101 |
+
|
102 |
+
if do_cfg:
|
103 |
+
model_input = model_input.repeat(2, 1, 1, 1)
|
104 |
+
|
105 |
+
model_output = diffusion(model_input, context, time_embedding)
|
106 |
+
|
107 |
+
if do_cfg:
|
108 |
+
output_cond, output_uncond = model_output.chunk(2)
|
109 |
+
model_output = cfg_scale * (output_cond - output_uncond) + output_uncond
|
110 |
+
|
111 |
+
latents = sampler.step(timestep, latents, model_output)
|
112 |
+
|
113 |
+
to_idle(diffusion)
|
114 |
+
|
115 |
+
decoder = models["decoder"]
|
116 |
+
decoder.to(device)
|
117 |
+
images = decoder(latents)
|
118 |
+
to_idle(decoder)
|
119 |
+
|
120 |
+
images = rescale(images, (-1, 1), (0, 255), clamp=True)
|
121 |
+
images = images.permute(0, 2, 3, 1)
|
122 |
+
images = images.to("cpu", torch.uint8).numpy()
|
123 |
+
return images[0]
|
124 |
+
|
125 |
+
def rescale(x, old_range, new_range, clamp=False):
|
126 |
+
old_min, old_max = old_range
|
127 |
+
new_min, new_max = new_range
|
128 |
+
x -= old_min
|
129 |
+
x *= (new_max - new_min) / (old_max - old_min)
|
130 |
+
x += new_min
|
131 |
+
if clamp:
|
132 |
+
x = x.clamp(new_min, new_max)
|
133 |
+
return x
|
134 |
+
|
135 |
+
def get_time_embedding(timestep):
|
136 |
+
# Shape: (160,)
|
137 |
+
freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32) / 160)
|
138 |
+
# Shape: (1, 160)
|
139 |
+
x = torch.tensor([timestep], dtype=torch.float32)[:, None] * freqs[None]
|
140 |
+
# Shape: (1, 160 * 2)
|
141 |
+
return torch.cat([torch.cos(x), torch.sin(x)], dim=-1)
|