Spaces:
Runtime error
Runtime error
Esmail-AGumaan
commited on
Commit
•
f8b823c
1
Parent(s):
898fdaa
Update diffusion.py
Browse files- diffusion.py +212 -212
diffusion.py
CHANGED
@@ -1,213 +1,213 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
from
|
5 |
-
|
6 |
-
class TimeEmbedding(nn.Module):
|
7 |
-
def __init__(self, n_embd):
|
8 |
-
super().__init__()
|
9 |
-
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
|
10 |
-
self.linear_2 = nn.Linear(4 * n_embd, 4 * n_embd)
|
11 |
-
|
12 |
-
def forward(self, x):
|
13 |
-
x = self.linear_1(x)
|
14 |
-
x = F.silu(x)
|
15 |
-
x = self.linear_2(x)
|
16 |
-
|
17 |
-
return x
|
18 |
-
|
19 |
-
class UNET_ResidualBlock(nn.Module):
|
20 |
-
def __init__(self, in_channels, out_channels, n_time=1280):
|
21 |
-
super().__init__()
|
22 |
-
self.groupnorm_feature = nn.GroupNorm(32, in_channels)
|
23 |
-
self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
24 |
-
self.linear_time = nn.Linear(n_time, out_channels)
|
25 |
-
|
26 |
-
self.groupnorm_merged = nn.GroupNorm(32, out_channels)
|
27 |
-
self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
28 |
-
|
29 |
-
if in_channels == out_channels:
|
30 |
-
self.residual_layer = nn.Identity()
|
31 |
-
else:
|
32 |
-
self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
|
33 |
-
|
34 |
-
def forward(self, feature, time):
|
35 |
-
residue = feature
|
36 |
-
|
37 |
-
feature = self.groupnorm_feature(feature)
|
38 |
-
feature = F.silu(feature)
|
39 |
-
feature = self.conv_feature(feature)
|
40 |
-
|
41 |
-
time = F.silu(time)
|
42 |
-
|
43 |
-
time = self.linear_time(time)
|
44 |
-
merged = feature + time.unsqueeze(-1).unsqueeze(-1)
|
45 |
-
merged = self.groupnorm_merged(merged)
|
46 |
-
merged = F.silu(merged)
|
47 |
-
merged = self.conv_merged(merged)
|
48 |
-
|
49 |
-
return merged + self.residual_layer(residue)
|
50 |
-
|
51 |
-
class UNET_AttentionBlock(nn.Module):
|
52 |
-
def __init__(self, n_head: int, n_embd: int, d_context=768):
|
53 |
-
super().__init__()
|
54 |
-
channels = n_head * n_embd
|
55 |
-
|
56 |
-
self.groupnorm = nn.GroupNorm(32, channels, eps=1e-6)
|
57 |
-
self.conv_input = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
|
58 |
-
|
59 |
-
self.layernorm_1 = nn.LayerNorm(channels)
|
60 |
-
self.attention_1 = SelfAttention(n_head, channels, in_proj_bias=False)
|
61 |
-
self.layernorm_2 = nn.LayerNorm(channels)
|
62 |
-
self.attention_2 = CrossAttention(n_head, channels, d_context, in_proj_bias=False)
|
63 |
-
self.layernorm_3 = nn.LayerNorm(channels)
|
64 |
-
self.linear_geglu_1 = nn.Linear(channels, 4 * channels * 2)
|
65 |
-
self.linear_geglu_2 = nn.Linear(4 * channels, channels)
|
66 |
-
|
67 |
-
self.conv_output = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
|
68 |
-
|
69 |
-
def forward(self, x, context):
|
70 |
-
residue_long = x
|
71 |
-
|
72 |
-
x = self.groupnorm(x)
|
73 |
-
x = self.conv_input(x)
|
74 |
-
|
75 |
-
n, c, h, w = x.shape
|
76 |
-
x = x.view((n, c, h * w))
|
77 |
-
|
78 |
-
x = x.transpose(-1, -2)
|
79 |
-
|
80 |
-
residue_short = x
|
81 |
-
|
82 |
-
x = self.layernorm_1(x)
|
83 |
-
x = self.attention_1(x)
|
84 |
-
x += residue_short
|
85 |
-
|
86 |
-
residue_short = x
|
87 |
-
|
88 |
-
x = self.layernorm_2(x)
|
89 |
-
x = self.attention_2(x, context)
|
90 |
-
|
91 |
-
x += residue_short
|
92 |
-
|
93 |
-
residue_short = x
|
94 |
-
|
95 |
-
x = self.layernorm_3(x)
|
96 |
-
|
97 |
-
# GeGLU as implemented in the original code: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/attention.py#L37C10-L37C10
|
98 |
-
x, gate = self.linear_geglu_1(x).chunk(2, dim=-1)
|
99 |
-
x = x * F.gelu(gate)
|
100 |
-
x = self.linear_geglu_2(x)
|
101 |
-
x += residue_short
|
102 |
-
x = x.transpose(-1, -2)
|
103 |
-
|
104 |
-
x = x.view((n, c, h, w))
|
105 |
-
|
106 |
-
return self.conv_output(x) + residue_long
|
107 |
-
|
108 |
-
class Upsample(nn.Module):
|
109 |
-
def __init__(self, channels):
|
110 |
-
super().__init__()
|
111 |
-
self.conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
112 |
-
|
113 |
-
def forward(self, x):
|
114 |
-
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
115 |
-
return self.conv(x)
|
116 |
-
|
117 |
-
class SwitchSequential(nn.Sequential):
|
118 |
-
def forward(self, x, context, time):
|
119 |
-
for layer in self:
|
120 |
-
if isinstance(layer, UNET_AttentionBlock):
|
121 |
-
x = layer(x, context)
|
122 |
-
elif isinstance(layer, UNET_ResidualBlock):
|
123 |
-
x = layer(x, time)
|
124 |
-
else:
|
125 |
-
x = layer(x)
|
126 |
-
return x
|
127 |
-
|
128 |
-
class UNET(nn.Module):
|
129 |
-
def __init__(self):
|
130 |
-
super().__init__()
|
131 |
-
self.encoders = nn.ModuleList([
|
132 |
-
SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
|
133 |
-
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
134 |
-
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
135 |
-
SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
|
136 |
-
SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)),
|
137 |
-
SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)),
|
138 |
-
SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
|
139 |
-
SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)),
|
140 |
-
SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)),
|
141 |
-
SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
|
142 |
-
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
143 |
-
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
144 |
-
])
|
145 |
-
|
146 |
-
self.bottleneck = SwitchSequential(
|
147 |
-
UNET_ResidualBlock(1280, 1280),
|
148 |
-
UNET_AttentionBlock(8, 160),
|
149 |
-
UNET_ResidualBlock(1280, 1280),
|
150 |
-
)
|
151 |
-
|
152 |
-
self.decoders = nn.ModuleList([
|
153 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
154 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
155 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)),
|
156 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
157 |
-
|
158 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
159 |
-
SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)),
|
160 |
-
|
161 |
-
SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)),
|
162 |
-
SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)),
|
163 |
-
|
164 |
-
SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)),
|
165 |
-
SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)),
|
166 |
-
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
167 |
-
|
168 |
-
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
169 |
-
])
|
170 |
-
|
171 |
-
def forward(self, x, context, time):
|
172 |
-
skip_connections = []
|
173 |
-
for layers in self.encoders:
|
174 |
-
x = layers(x, context, time)
|
175 |
-
skip_connections.append(x)
|
176 |
-
|
177 |
-
x = self.bottleneck(x, context, time)
|
178 |
-
|
179 |
-
for layers in self.decoders:
|
180 |
-
x = torch.cat((x, skip_connections.pop()), dim=1)
|
181 |
-
x = layers(x, context, time)
|
182 |
-
|
183 |
-
return x
|
184 |
-
|
185 |
-
|
186 |
-
class UNET_OutputLayer(nn.Module):
|
187 |
-
def __init__(self, in_channels, out_channels):
|
188 |
-
super().__init__()
|
189 |
-
self.groupnorm = nn.GroupNorm(32, in_channels)
|
190 |
-
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
191 |
-
|
192 |
-
def forward(self, x):
|
193 |
-
x = self.groupnorm(x)
|
194 |
-
x = F.silu(x)
|
195 |
-
x = self.conv(x)
|
196 |
-
|
197 |
-
return x
|
198 |
-
|
199 |
-
class Diffusion(nn.Module):
|
200 |
-
def __init__(self):
|
201 |
-
super().__init__()
|
202 |
-
self.time_embedding = TimeEmbedding(320)
|
203 |
-
self.unet = UNET()
|
204 |
-
self.final = UNET_OutputLayer(320, 4)
|
205 |
-
|
206 |
-
def forward(self, latent, context, time):
|
207 |
-
time = self.time_embedding(time)
|
208 |
-
|
209 |
-
output = self.unet(latent, context, time)
|
210 |
-
|
211 |
-
output = self.final(output)
|
212 |
-
|
213 |
return output
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from attention import SelfAttention, CrossAttention
|
5 |
+
|
6 |
+
class TimeEmbedding(nn.Module):
|
7 |
+
def __init__(self, n_embd):
|
8 |
+
super().__init__()
|
9 |
+
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
|
10 |
+
self.linear_2 = nn.Linear(4 * n_embd, 4 * n_embd)
|
11 |
+
|
12 |
+
def forward(self, x):
|
13 |
+
x = self.linear_1(x)
|
14 |
+
x = F.silu(x)
|
15 |
+
x = self.linear_2(x)
|
16 |
+
|
17 |
+
return x
|
18 |
+
|
19 |
+
class UNET_ResidualBlock(nn.Module):
|
20 |
+
def __init__(self, in_channels, out_channels, n_time=1280):
|
21 |
+
super().__init__()
|
22 |
+
self.groupnorm_feature = nn.GroupNorm(32, in_channels)
|
23 |
+
self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
24 |
+
self.linear_time = nn.Linear(n_time, out_channels)
|
25 |
+
|
26 |
+
self.groupnorm_merged = nn.GroupNorm(32, out_channels)
|
27 |
+
self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
28 |
+
|
29 |
+
if in_channels == out_channels:
|
30 |
+
self.residual_layer = nn.Identity()
|
31 |
+
else:
|
32 |
+
self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
|
33 |
+
|
34 |
+
def forward(self, feature, time):
|
35 |
+
residue = feature
|
36 |
+
|
37 |
+
feature = self.groupnorm_feature(feature)
|
38 |
+
feature = F.silu(feature)
|
39 |
+
feature = self.conv_feature(feature)
|
40 |
+
|
41 |
+
time = F.silu(time)
|
42 |
+
|
43 |
+
time = self.linear_time(time)
|
44 |
+
merged = feature + time.unsqueeze(-1).unsqueeze(-1)
|
45 |
+
merged = self.groupnorm_merged(merged)
|
46 |
+
merged = F.silu(merged)
|
47 |
+
merged = self.conv_merged(merged)
|
48 |
+
|
49 |
+
return merged + self.residual_layer(residue)
|
50 |
+
|
51 |
+
class UNET_AttentionBlock(nn.Module):
|
52 |
+
def __init__(self, n_head: int, n_embd: int, d_context=768):
|
53 |
+
super().__init__()
|
54 |
+
channels = n_head * n_embd
|
55 |
+
|
56 |
+
self.groupnorm = nn.GroupNorm(32, channels, eps=1e-6)
|
57 |
+
self.conv_input = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
|
58 |
+
|
59 |
+
self.layernorm_1 = nn.LayerNorm(channels)
|
60 |
+
self.attention_1 = SelfAttention(n_head, channels, in_proj_bias=False)
|
61 |
+
self.layernorm_2 = nn.LayerNorm(channels)
|
62 |
+
self.attention_2 = CrossAttention(n_head, channels, d_context, in_proj_bias=False)
|
63 |
+
self.layernorm_3 = nn.LayerNorm(channels)
|
64 |
+
self.linear_geglu_1 = nn.Linear(channels, 4 * channels * 2)
|
65 |
+
self.linear_geglu_2 = nn.Linear(4 * channels, channels)
|
66 |
+
|
67 |
+
self.conv_output = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
|
68 |
+
|
69 |
+
def forward(self, x, context):
|
70 |
+
residue_long = x
|
71 |
+
|
72 |
+
x = self.groupnorm(x)
|
73 |
+
x = self.conv_input(x)
|
74 |
+
|
75 |
+
n, c, h, w = x.shape
|
76 |
+
x = x.view((n, c, h * w))
|
77 |
+
|
78 |
+
x = x.transpose(-1, -2)
|
79 |
+
|
80 |
+
residue_short = x
|
81 |
+
|
82 |
+
x = self.layernorm_1(x)
|
83 |
+
x = self.attention_1(x)
|
84 |
+
x += residue_short
|
85 |
+
|
86 |
+
residue_short = x
|
87 |
+
|
88 |
+
x = self.layernorm_2(x)
|
89 |
+
x = self.attention_2(x, context)
|
90 |
+
|
91 |
+
x += residue_short
|
92 |
+
|
93 |
+
residue_short = x
|
94 |
+
|
95 |
+
x = self.layernorm_3(x)
|
96 |
+
|
97 |
+
# GeGLU as implemented in the original code: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/attention.py#L37C10-L37C10
|
98 |
+
x, gate = self.linear_geglu_1(x).chunk(2, dim=-1)
|
99 |
+
x = x * F.gelu(gate)
|
100 |
+
x = self.linear_geglu_2(x)
|
101 |
+
x += residue_short
|
102 |
+
x = x.transpose(-1, -2)
|
103 |
+
|
104 |
+
x = x.view((n, c, h, w))
|
105 |
+
|
106 |
+
return self.conv_output(x) + residue_long
|
107 |
+
|
108 |
+
class Upsample(nn.Module):
|
109 |
+
def __init__(self, channels):
|
110 |
+
super().__init__()
|
111 |
+
self.conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
115 |
+
return self.conv(x)
|
116 |
+
|
117 |
+
class SwitchSequential(nn.Sequential):
|
118 |
+
def forward(self, x, context, time):
|
119 |
+
for layer in self:
|
120 |
+
if isinstance(layer, UNET_AttentionBlock):
|
121 |
+
x = layer(x, context)
|
122 |
+
elif isinstance(layer, UNET_ResidualBlock):
|
123 |
+
x = layer(x, time)
|
124 |
+
else:
|
125 |
+
x = layer(x)
|
126 |
+
return x
|
127 |
+
|
128 |
+
class UNET(nn.Module):
|
129 |
+
def __init__(self):
|
130 |
+
super().__init__()
|
131 |
+
self.encoders = nn.ModuleList([
|
132 |
+
SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
|
133 |
+
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
134 |
+
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
135 |
+
SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
|
136 |
+
SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)),
|
137 |
+
SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)),
|
138 |
+
SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
|
139 |
+
SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)),
|
140 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)),
|
141 |
+
SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
|
142 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
143 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
144 |
+
])
|
145 |
+
|
146 |
+
self.bottleneck = SwitchSequential(
|
147 |
+
UNET_ResidualBlock(1280, 1280),
|
148 |
+
UNET_AttentionBlock(8, 160),
|
149 |
+
UNET_ResidualBlock(1280, 1280),
|
150 |
+
)
|
151 |
+
|
152 |
+
self.decoders = nn.ModuleList([
|
153 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
154 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
155 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)),
|
156 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
157 |
+
|
158 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
159 |
+
SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)),
|
160 |
+
|
161 |
+
SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)),
|
162 |
+
SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)),
|
163 |
+
|
164 |
+
SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)),
|
165 |
+
SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)),
|
166 |
+
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
167 |
+
|
168 |
+
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
169 |
+
])
|
170 |
+
|
171 |
+
def forward(self, x, context, time):
|
172 |
+
skip_connections = []
|
173 |
+
for layers in self.encoders:
|
174 |
+
x = layers(x, context, time)
|
175 |
+
skip_connections.append(x)
|
176 |
+
|
177 |
+
x = self.bottleneck(x, context, time)
|
178 |
+
|
179 |
+
for layers in self.decoders:
|
180 |
+
x = torch.cat((x, skip_connections.pop()), dim=1)
|
181 |
+
x = layers(x, context, time)
|
182 |
+
|
183 |
+
return x
|
184 |
+
|
185 |
+
|
186 |
+
class UNET_OutputLayer(nn.Module):
|
187 |
+
def __init__(self, in_channels, out_channels):
|
188 |
+
super().__init__()
|
189 |
+
self.groupnorm = nn.GroupNorm(32, in_channels)
|
190 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
191 |
+
|
192 |
+
def forward(self, x):
|
193 |
+
x = self.groupnorm(x)
|
194 |
+
x = F.silu(x)
|
195 |
+
x = self.conv(x)
|
196 |
+
|
197 |
+
return x
|
198 |
+
|
199 |
+
class Diffusion(nn.Module):
|
200 |
+
def __init__(self):
|
201 |
+
super().__init__()
|
202 |
+
self.time_embedding = TimeEmbedding(320)
|
203 |
+
self.unet = UNET()
|
204 |
+
self.final = UNET_OutputLayer(320, 4)
|
205 |
+
|
206 |
+
def forward(self, latent, context, time):
|
207 |
+
time = self.time_embedding(time)
|
208 |
+
|
209 |
+
output = self.unet(latent, context, time)
|
210 |
+
|
211 |
+
output = self.final(output)
|
212 |
+
|
213 |
return output
|