import torch import math import numpy as np import enum class GaussingDistribution: def __init__(self, parameters: torch.Tensor) -> None: self.mean, log_variance = torch.chunk(parameters, 2, dim=1) self.log_variance = torch.clamp(log_variance, -30.0, 20.0) self.std = torch.exp(0.5 * self.log_variance) def sample(self): return self.mean + self.std * torch.rand_like(self.std) def normal_kl(mean1, logvar1, mean2, logvar2): tensor = None for obj in (mean1, logvar1, mean2, logvar2): if isinstance(obj, torch.Tensor): tensor = obj break assert tensor is not None, "at least one argument must be a Tensor" logvar1, logvar2 = [ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) for x in (logvar1, logvar2) ] return 0.5 * ( -1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) ) def approx_standard_normal_cdf(x): return 0.5 * (1.0 + torch.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * torch.pow(x, 3)))) def continuous_gaussian_log_likelihood(x, *, means, log_scales): centered_x = x - means inv_stdv = torch.exp(-log_scales) normalized_x = centered_x * inv_stdv log_probs = torch.distributions.Normal(torch.zeros_like(x), torch.ones_like(x)).log_prob(normalized_x) return log_probs def discretized_gaussian_log_likelihood(x, *, means, log_scales): assert x.shape == means.shape == log_scales.shape centered_x = x - means inv_stdv = torch.exp(-log_scales) plus_in = inv_stdv * (centered_x + 1.0 / 255.0) cdf_plus = approx_standard_normal_cdf(plus_in) min_in = inv_stdv * (centered_x - 1.0 / 255.0) cdf_min = approx_standard_normal_cdf(min_in) log_cdf_plus = torch.log(cdf_plus.clamp(min=1e-12)) log_one_minus_cdf_min = torch.log((1.0 - cdf_min).clamp(min=1e-12)) cdf_delta = cdf_plus - cdf_min log_probs = torch.where( x < -0.999, log_cdf_plus, torch.where(x > 0.999, log_one_minus_cdf_min, torch.log(cdf_delta.clamp(min=1e-12))), ) assert log_probs.shape == x.shape return log_probs ################# Gaussing #################### def mean_flat(tensor): return tensor.mean(dim=list(range(1, len(tensor.shape)))) class ModelMeanType(enum.Enum): PREVIOUS_X = enum.auto() # the model predicts x_{t-1} START_X = enum.auto() # the model predicts x_0 EPSILON = enum.auto() # the model predicts epsilon class ModelVarType(enum.Enum): LEARNED = enum.auto() FIXED_SMALL = enum.auto() FIXED_LARGE = enum.auto() LEARNED_RANGE = enum.auto() class LossType(enum.Enum): MSE = enum.auto() # use raw MSE loss (and KL when learning variances) RESCALED_MSE = ( enum.auto() ) # use raw MSE loss (with RESCALED_KL when learning variances) KL = enum.auto() # use the variational lower-bound RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB def is_vb(self): return self == LossType.KL or self == LossType.RESCALED_KL def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac): betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) warmup_time = int(num_diffusion_timesteps * warmup_frac) betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) return betas def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): if beta_schedule == "quad": betas = ( np.linspace( beta_start ** 0.5, beta_end ** 0.5, num_diffusion_timesteps, dtype=np.float64, ) ** 2 ) elif beta_schedule == "linear": betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) elif beta_schedule == "warmup10": betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1) elif beta_schedule == "warmup50": betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5) elif beta_schedule == "const": betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1 betas = 1.0 / np.linspace( num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64 ) else: raise NotImplementedError(beta_schedule) assert betas.shape == (num_diffusion_timesteps,) return betas def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): if schedule_name == "linear": scale = 1000 / num_diffusion_timesteps return get_beta_schedule( "linear", beta_start=scale * 0.0001, beta_end=scale * 0.02, num_diffusion_timesteps=num_diffusion_timesteps, ) elif schedule_name == "squaredcos_cap_v2": return betas_for_alpha_bar( num_diffusion_timesteps, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ) else: raise NotImplementedError(f"unknown beta schedule: {schedule_name}") def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas) class GaussianDiffusion: def __init__( self, *, betas, model_mean_type, model_var_type, loss_type ): self.model_mean_type = model_mean_type self.model_var_type = model_var_type self.loss_type = loss_type # Use float64 for accuracy. betas = np.array(betas, dtype=np.float64) self.betas = betas assert len(betas.shape) == 1, "betas must be 1-D" assert (betas > 0).all() and (betas <= 1).all() self.num_timesteps = int(betas.shape[0]) alphas = 1.0 - betas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) # calculations for diffusion q(x_t | x_{t-1}) and others self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) # calculations for posterior q(x_{t-1} | x_t, x_0) self.posterior_variance = ( betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.posterior_log_variance_clipped = np.log( np.append(self.posterior_variance[1], self.posterior_variance[1:]) ) if len(self.posterior_variance) > 1 else np.array([]) self.posterior_mean_coef1 = ( betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) self.posterior_mean_coef2 = ( (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) ) def q_mean_variance(self, x_start, t): mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def q_sample(self, x_start, t, noise=None): if noise is None: noise = torch.randn_like(x_start) assert noise.shape == x_start.shape return ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def q_posterior_mean_variance(self, x_start, x_t, t): assert x_start.shape == x_t.shape posterior_mean = ( _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = _extract_into_tensor( self.posterior_log_variance_clipped, t, x_t.shape ) assert ( posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] == x_start.shape[0] ) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None): if model_kwargs is None: model_kwargs = {} B, C = x.shape[:2] assert t.shape == (B,) model_output = model(x, t, **model_kwargs) if isinstance(model_output, tuple): model_output, extra = model_output else: extra = None if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: assert model_output.shape == (B, C * 2, *x.shape[2:]) model_output, model_var_values = torch.split(model_output, C, dim=1) min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) frac = (model_var_values + 1) / 2 model_log_variance = frac * max_log + (1 - frac) * min_log model_variance = torch.exp(model_log_variance) else: model_variance, model_log_variance = { ModelVarType.FIXED_LARGE: ( np.append(self.posterior_variance[1], self.betas[1:]), np.log(np.append(self.posterior_variance[1], self.betas[1:])), ), ModelVarType.FIXED_SMALL: ( self.posterior_variance, self.posterior_log_variance_clipped, ), }[self.model_var_type] model_variance = _extract_into_tensor(model_variance, t, x.shape) model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) def process_xstart(x): if denoised_fn is not None: x = denoised_fn(x) if clip_denoised: return x.clamp(-1, 1) return x if self.model_mean_type == ModelMeanType.START_X: pred_xstart = process_xstart(model_output) else: pred_xstart = process_xstart( self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) ) model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape return { "mean": model_mean, "variance": model_variance, "log_variance": model_log_variance, "pred_xstart": pred_xstart, "extra": extra, } def _predict_xstart_from_eps(self, x_t, t, eps): assert x_t.shape == eps.shape return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps ) def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): gradient = cond_fn(x, t, **model_kwargs) new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() return new_mean def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs) out = p_mean_var.copy() out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) return out def p_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, ): out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = torch.randn_like(x) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 if cond_fn is not None: out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) sample = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def p_sample_loop( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, ): final = None for sample in self.p_sample_loop_progressive( model, shape, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, ): final = sample return final["sample"] def p_sample_loop_progressive( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, ): if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = torch.randn(*shape, device=device) indices = list(range(self.num_timesteps))[::-1] if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = torch.tensor([i] * shape[0], device=device) with torch.no_grad(): out = self.p_sample( model, img, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, ) yield out img = out["sample"] def ddim_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, eta=0.0, ): out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) sigma = ( eta * torch.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * torch.sqrt(1 - alpha_bar / alpha_bar_prev) ) # Equation 12. noise = torch.randn_like(x) mean_pred = ( out["pred_xstart"] * torch.sqrt(alpha_bar_prev) + torch.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps ) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = mean_pred + nonzero_mask * sigma * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def ddim_reverse_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, eta=0.0, ): assert eta == 0.0, "Reverse ODE only for deterministic path" out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) eps = ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) # Equation 12. reversed mean_pred = out["pred_xstart"] * torch.sqrt(alpha_bar_next) + torch.sqrt(1 - alpha_bar_next) * eps return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} def ddim_sample_loop( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, ): final = None for sample in self.ddim_sample_loop_progressive( model, shape, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, eta=eta, ): final = sample return final["sample"] def ddim_sample_loop_progressive( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, ): if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = torch.randn(*shape, device=device) indices = list(range(self.num_timesteps))[::-1] if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = torch.tensor([i] * shape[0], device=device) with torch.no_grad(): out = self.ddim_sample( model, img, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, eta=eta, ) yield out img = out["sample"] def _vb_terms_bpd( self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None ): true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t ) out = self.p_mean_variance( model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs ) kl = normal_kl( true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] ) kl = mean_flat(kl) / np.log(2.0) decoder_nll = -discretized_gaussian_log_likelihood( x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] ) assert decoder_nll.shape == x_start.shape decoder_nll = mean_flat(decoder_nll) / np.log(2.0) # At the first timestep return the decoder NLL, # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) output = torch.where((t == 0), decoder_nll, kl) return {"output": output, "pred_xstart": out["pred_xstart"]} def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): if model_kwargs is None: model_kwargs = {} if noise is None: noise = torch.randn_like(x_start) x_t = self.q_sample(x_start, t, noise=noise) terms = {} if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: terms["loss"] = self._vb_terms_bpd( model=model, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, model_kwargs=model_kwargs, )["output"] if self.loss_type == LossType.RESCALED_KL: terms["loss"] *= self.num_timesteps elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: model_output = model(x_t, t, **model_kwargs) if self.model_var_type in [ ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE, ]: B, C = x_t.shape[:2] assert model_output.shape == (B, C * 2, *x_t.shape[2:]) model_output, model_var_values = torch.split(model_output, C, dim=1) frozen_out = torch.cat([model_output.detach(), model_var_values], dim=1) terms["vb"] = self._vb_terms_bpd( model=lambda *args, r=frozen_out: r, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, )["output"] if self.loss_type == LossType.RESCALED_MSE: terms["vb"] *= self.num_timesteps / 1000.0 target = { ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t )[0], ModelMeanType.START_X: x_start, ModelMeanType.EPSILON: noise, }[self.model_mean_type] assert model_output.shape == target.shape == x_start.shape terms["mse"] = mean_flat((target - model_output) ** 2) if "vb" in terms: terms["loss"] = terms["mse"] + terms["vb"] else: terms["loss"] = terms["mse"] else: raise NotImplementedError(self.loss_type) return terms def _prior_bpd(self, x_start): batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl( mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 ) return mean_flat(kl_prior) / np.log(2.0) def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): device = x_start.device batch_size = x_start.shape[0] vb = [] xstart_mse = [] mse = [] for t in list(range(self.num_timesteps))[::-1]: t_batch = torch.tensor([t] * batch_size, device=device) noise = torch.randn_like(x_start) x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) # Calculate VLB term at the current timestep with torch.no_grad(): out = self._vb_terms_bpd( model, x_start=x_start, x_t=x_t, t=t_batch, clip_denoised=clip_denoised, model_kwargs=model_kwargs, ) vb.append(out["output"]) xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) mse.append(mean_flat((eps - noise) ** 2)) vb = torch.stack(vb, dim=1) xstart_mse = torch.stack(xstart_mse, dim=1) mse = torch.stack(mse, dim=1) prior_bpd = self._prior_bpd(x_start) total_bpd = vb.sum(dim=1) + prior_bpd return { "total_bpd": total_bpd, "prior_bpd": prior_bpd, "vb": vb, "xstart_mse": xstart_mse, "mse": mse, } def _extract_into_tensor(arr, timesteps, broadcast_shape): res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res + torch.zeros(broadcast_shape, device=timesteps.device) ############################### Denoising Diffusion Probabilistic Model################################### class DDPMSampler: def __init__(self, generator: torch.Generator, num_training_steps=1000, beta_start: float = 0.00085, beta_end: float = 0.0120): self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_training_steps, dtype=torch.float32) ** 2 self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, d_model=0) self.one = torch.tensor(1.0) self.generator = generator self.num_train_timesteps = num_training_steps self.timesteps = torch.from_numpy(np.arange(0, num_training_steps)[::-1].copy()) def set_inference_timesteps(self, num_inference_steps=50): self.num_inference_steps = num_inference_steps step_ratio = self.num_train_timesteps // self.num_inference_steps timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) self.timesteps = torch.from_numpy(timesteps) def _get_previous_timestep(self, timestep: int) -> int: prev_t = timestep - self.num_train_timesteps // self.num_inference_steps return prev_t def _get_variance(self, timestep: int) -> torch.Tensor: prev_t = self._get_previous_timestep(timestep) alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t variance = torch.clamp(variance, min=1e-20) return variance def set_strength(self, strength=1): """ Set how much noise to add to the input image. More noise (strength ~ 1) means that the output will be further from the input image. Less noise (strength ~ 0) means that the output will be closer to the input image. """ start_step = self.num_inference_steps - int(self.num_inference_steps * strength) self.timesteps = self.timesteps[start_step:] self.start_step = start_step def step(self, timestep: int, latents: torch.Tensor, model_output: torch.Tensor): t = timestep prev_t = self._get_previous_timestep(t) alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev current_alpha_t = alpha_prod_t / alpha_prod_t_prev current_beta_t = 1 - current_alpha_t pred_original_sample = (latents - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * latents variance = 0 if t > 0: device = model_output.device noise = torch.randn(model_output.shape, generator=self.generator, device=device, dtype=model_output.dtype) variance = (self._get_variance(t) ** 0.5) * noise pred_prev_sample = pred_prev_sample + variance return pred_prev_sample def add_noise( self, original_samples: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noise = torch.randn(original_samples.shape, generator=self.generator, device=original_samples.device, dtype=original_samples.dtype) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples