import torch from torch import nn from torch.nn import functional as F from nanograd.models.stable_diffusion.decoder import VAE_AttentionBlock, VAE_ResidualBlock class VAE_Encoder(nn.Sequential): def __init__(self): super().__init__( nn.Conv2d(3, 128, kernel_size=3, padding=1), VAE_ResidualBlock(128, 128), VAE_ResidualBlock(128, 128), nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0), VAE_ResidualBlock(128, 256), VAE_ResidualBlock(256, 256), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0), VAE_ResidualBlock(256, 512), VAE_ResidualBlock(512, 512), nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_AttentionBlock(512), VAE_ResidualBlock(512, 512), nn.GroupNorm(32, 512), nn.SiLU(), nn.Conv2d(512, 8, kernel_size=3, padding=1), nn.Conv2d(8, 8, kernel_size=1, padding=0), ) def forward(self, x, noise): for module in self: if getattr(module, 'stride', None) == (2, 2): x = F.pad(x, (0, 1, 0, 1)) x = module(x) mean, log_variance = torch.chunk(x, 2, dim=1) log_variance = torch.clamp(log_variance, -30, 20) variance = log_variance.exp() stdev = variance.sqrt() x = mean + stdev * noise # Constant taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L17C1-L17C1 x *= 0.18215 return x