import gradio as gr from PIL import Image from pathlib import Path from transformers import CLIPTokenizer import torch import subprocess import os import random import model_loader, pipeline # Configure devices DEVICE = "cpu" ALLOW_CUDA = False ALLOW_MPS = True if torch.cuda.is_available() and ALLOW_CUDA: DEVICE = "cuda" elif torch.backends.mps.is_available() and ALLOW_MPS: DEVICE = "mps" print(f"Using device: {DEVICE}") # Load Stable Diffusion model tokenizer_vocab_path = Path("C:\\Users\\Esmail\\Desktop\\nanograd\\nanograd\\models\\stable_diffusion\\sd_data\\tokenizer_vocab.json") tokenizer_merges_path = Path("C:\\Users\\Esmail\\Desktop\\nanograd\\nanograd\\models\\stable_diffusion\\sd_data\\tokenizer_merges.txt") model_file = Path("C:\\Users\\Esmail\\Desktop\\nanograd\\nanograd\\models\\stable_diffusion\\sd_data\\v1-5-pruned-emaonly.ckpt") tokenizer = CLIPTokenizer(str(tokenizer_vocab_path), merges_file=str(tokenizer_merges_path)) models = model_loader.preload_models_from_standard_weights(str(model_file), DEVICE) # Blueprints for image generation and text generation blueprints = { "Visual Story": { "sd_prompts": [ "A futuristic city skyline at dusk, flying cars, neon lights, cyberpunk style", "A bustling marketplace in a futuristic city, holograms, diverse crowd", "A serene park in a futuristic city with advanced technology blending with nature" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Describe a futuristic city that blends natural elements with advanced technology.", "Write about an advanced cityscape with unique technological elements.", "Imagine a futuristic metropolis where nature and technology harmoniously coexist." ], "ollama_models": ["llama3", "aya", "codellama"] }, # Other blueprints with similar structure... "Nature & Poetry": { "sd_prompts": [ "A peaceful mountain landscape at sunrise, photorealistic, serene", "A tranquil lake surrounded by autumn trees, soft light, misty atmosphere", "A hidden waterfall in a dense jungle, lush greenery, crystal clear water" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Write a short poem about a tranquil sunrise over the mountains.", "Describe the beauty of a hidden waterfall in a jungle.", "Compose a poetic reflection on the serenity of a lake at dawn." ], "ollama_models": ["llama3", "aya", "codellama"] }, # Additional blueprints with multiple prompts... "Dreamscape": { "sd_prompts": [ "A surreal dreamscape with floating islands and bioluminescent creatures", "An endless horizon of strange landscapes, blending day and night", "A fantastical world with floating rocks and neon-lit skies" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Describe a dreamlike world filled with wonder and mystery.", "Write about a place where time doesn't exist, only dreams.", "Create a story where reality and fantasy blur together." ], "ollama_models": ["llama3", "aya", "codellama"] }, "Abstract Art": { "sd_prompts": [ "Abstract painting with vibrant colors and dynamic shapes", "A digital artwork with chaotic patterns and bold contrasts", "Geometric abstraction with a focus on form and color" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Write a short description of an abstract painting.", "Describe a piece of modern art that defies traditional norms.", "Imagine a world where art is created by emotions, not hands." ], "ollama_models": ["llama3", "aya", "codellama"] }, "Fashion Design": { "sd_prompts": [ "A high-fashion model wearing a futuristic outfit, neon colors, catwalk pose", "A chic ensemble blending classic elegance with modern flair", "Avant-garde fashion with bold textures and unconventional shapes" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Describe a unique and innovative fashion design.", "Write about a new fashion trend inspired by nature.", "Imagine a clothing line that combines style with sustainability." ], "ollama_models": ["llama3", "aya", "codellama"] }, "Food & Recipe": { "sd_prompts": [ "Abstract painting with vibrant colors and dynamic shapes", "A digital artwork with chaotic patterns and bold contrasts", "Geometric abstraction with a focus on form and color" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Write a short description of an abstract painting.", "Describe a piece of modern art that defies traditional norms.", "Imagine a world where art is created by emotions, not hands." ], "ollama_models": ["llama3", "aya", "codellama"] }, "Interior Design": { "sd_prompts": [ "A modern living room with sleek furniture, minimalist design, and natural light", "A cozy study room with rich textures, warm colors, and elegant decor", "An open-plan kitchen with contemporary appliances and stylish finishes" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Describe an interior design that combines modern and classic elements.", "Write about a space that enhances productivity and relaxation through design.", "Imagine a luxurious interior design for a high-end apartment." ], "ollama_models": ["llama3", "aya", "codellama"] }, "Historical Fiction": { "sd_prompts": [ "A bustling Victorian-era street with horse-drawn carriages and period architecture", "A grand historical ballroom with opulent decor and elegantly dressed guests", "An ancient battlefield with detailed historical accuracy and dramatic scenery" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Describe a significant historical event as if it were a scene in a novel.", "Write about a character navigating the challenges of a historical setting.", "Imagine a historical figure interacting with modern technology." ], "ollama_models": ["llama3", "aya", "codellama"] }, "Science Fiction": { "sd_prompts": [ "A futuristic cityscape with flying cars, neon lights, and towering skyscrapers", "An alien planet with unique landscapes, strange flora, and advanced technology", "A space station with cutting-edge design and high-tech equipment" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Describe a futuristic world where technology has reshaped society.", "Write about an encounter with an alien civilization.", "Imagine a story set in a distant future with advanced technology and space exploration." ], "ollama_models": ["llama3", "aya", "codellama"] }, "Character Design": { "sd_prompts": [ "A detailed fantasy character with elaborate costumes and accessories", "A sci-fi hero with futuristic armor and high-tech gadgets", "A historical figure portrayed with accurate attire and realistic features" ], "sd_cfg_scales": [9, 8, 7], "sd_num_inference_steps": [60, 50, 45], "sd_samplers": ["ddpm", "k_euler_ancestral", "euler"], "ollama_prompts": [ "Describe a unique character from a fantasy novel, focusing on their appearance and personality.", "Write about a futuristic character with advanced technology and a compelling backstory.", "Imagine a historical figure as a character in a modern setting." ], "ollama_models": ["llama3", "aya", "codellama"] } } # Define functions for each feature def generate_image(prompt, cfg_scale, num_inference_steps, sampler): uncond_prompt = "" do_cfg = True input_image = None strength = 0.9 seed = 42 output_image = pipeline.generate( prompt=prompt, uncond_prompt=uncond_prompt, input_image=input_image, strength=strength, do_cfg=do_cfg, cfg_scale=cfg_scale, sampler_name=sampler, n_inference_steps=num_inference_steps, seed=seed, models=models, device=DEVICE, idle_device="cpu", tokenizer=tokenizer, ) output_image = Image.fromarray(output_image) return output_image def apply_blueprint(blueprint_name): if blueprint_name in blueprints: bp = blueprints[blueprint_name] sd_prompts = random.choice(bp["sd_prompts"]) sd_cfg_scale = random.choice(bp["sd_cfg_scales"]) sd_num_inference_steps = random.choice(bp["sd_num_inference_steps"]) sd_sampler = random.choice(bp["sd_samplers"]) ollama_prompts = random.choice(bp["ollama_prompts"]) ollama_model = random.choice(bp["ollama_models"]) return ( sd_prompts, sd_cfg_scale, sd_num_inference_steps, sd_sampler, ollama_model, ollama_prompts ) return "", 7, 20, "ddpm", "aya", "" def download_checkpoint(checkpoint): try: # Run the litgpt download command command = ["litgpt", "download", checkpoint] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) output, error = process.communicate() if process.returncode == 0: return f"Checkpoint '{checkpoint}' downloaded successfully.\n{output}" else: return f"Error downloading checkpoint '{checkpoint}':\n{error}" except Exception as e: return f"Unexpected error: {str(e)}" def chat_with_ollama(model_name, prompt): command = ['ollama', 'run', model_name, prompt] result = subprocess.run(command, capture_output=True, text=True) return result.stdout def install_ollama(): try: # Command to install Ollama silently installer_path = "OllamaSetup.exe" if not os.path.exists(installer_path): # Download the installer if not already available subprocess.run(["curl", "-o", installer_path, "https://ollama.com/download/OllamaSetup.exe"], check=True) # Run the installer silently subprocess.run([installer_path, "/S"], check=True) return "Ollama installed successfully." except Exception as e: return f"Installation failed: {str(e)}" def welcome(name): return f"Welcome to nanograd Engine, {name}!" js = """ function createGradioAnimation() { var container = document.createElement('div'); container.id = 'gradio-animation'; container.style.fontSize = '2em'; container.style.fontWeight = 'bold'; container.style.textAlign = 'center'; container.style.marginBottom = '20px'; var text = 'Welcome to nanograd Engine!'; for (var i = 0; i < text.length; i++) { (function(i){ setTimeout(function(){ var letter = document.createElement('span'); letter.style.opacity = '0'; letter.style.transition = 'opacity 0.5s'; letter.innerText = text[i]; container.appendChild(letter); setTimeout(function() { letter.style.opacity = '1'; }, 50); }, i * 250); })(i); } var gradioContainer = document.querySelector('.gradio-container'); gradioContainer.insertBefore(container, gradioContainer.firstChild); return 'Animation created'; } """ # Gradio interface def gradio_interface(): with gr.Blocks('ParityError/Interstellar', js=js) as demo: with gr.Tab("nano-Engine"): with gr.Row(): with gr.Column(scale=1): # Text Generation with Ollama gr.Markdown("### Generate Text with Ollama") ollama_model_name = gr.Dropdown(label="Select Ollama Model", choices=["aya", "llama3", "codellama"], value="aya") ollama_prompts = gr.Textbox(label="Prompt", placeholder="Enter your prompt here") ollama_output = gr.Textbox(label="Output", placeholder="Model output will appear here", interactive=True) ollama_btn = gr.Button("Generate", variant="primary") ollama_btn.click(fn=chat_with_ollama, inputs=[ollama_model_name, ollama_prompts], outputs=ollama_output) gr.Markdown("### GPT Checkpoints Management") checkpoint_dropdown = gr.Dropdown(label="Select Checkpoint", choices=["EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-1.3B", "microsoft/phi-2", "codellama/CodeLlama-13b-hf"], value="EleutherAI/gpt-neo-125M") download_btn = gr.Button("Download Checkpoint", variant="primary") checkpoint_status = gr.Textbox(label="Download Status", placeholder="Status will appear here", interactive=True) download_btn.click(fn=download_checkpoint, inputs=checkpoint_dropdown, outputs=checkpoint_status) gr.Markdown("### Install Ollama") install_ollama_btn = gr.Button("Install Ollama", variant="primary") installation_status = gr.Textbox(label="Installation Status", placeholder="Status will appear here", interactive=True) install_ollama_btn.click(fn=install_ollama, outputs=installation_status) with gr.Column(scale=1): gr.Markdown("### Stable Diffusion Image Generation") prompt_input = gr.Textbox(label="Prompt", placeholder="A cat stretching on the floor, highly detailed, ultra sharp, cinematic, 100mm lens, 8k resolution") cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) num_inference_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=100, value=20, step=5) sampler = gr.Radio(label="Sampling Method", choices=["ddpm", "Euler a", "Euler", "LMS", "Heun", "DPM2 a", "PLMS"], value="ddpm") generate_img_btn = gr.Button("Generate", variant="primary") output_image = gr.Image(label="Output", show_label=False, height=700, width=750) generate_img_btn.click(fn=generate_image, inputs=[prompt_input, cfg_scale, num_inference_steps, sampler], outputs=output_image) with gr.Tab("Blueprints"): with gr.Row(): blueprint_dropdown = gr.Dropdown(label="Select Blueprint", choices=list(blueprints.keys()), value=list(blueprints.keys())[0]) load_blueprint_btn = gr.Button("Load Blueprint", variant="primary") # Blueprint Outputs sd_prompt_output = gr.Textbox(label="SD Prompt", interactive=True) sd_cfg_output = gr.Slider(label="SD CFG Scale", minimum=1, maximum=20, step=1, interactive=True) sd_steps_output = gr.Slider(label="SD Sampling Steps", minimum=10, maximum=100, step=5, interactive=True) sd_sampler_output = gr.Radio(label="SD Sampler", choices=["ddpm", "Euler a", "Euler", "LMS", "Heun", "DPM2 a", "PLMS"], value="ddpm", interactive=True) ollama_model_output = gr.Dropdown(label="Ollama Model", choices=["aya", "llama3", "codellama"], value="aya", interactive=True) ollama_prompt_output = gr.Textbox(label="Ollama Prompt", interactive=True) def load_blueprint(blueprint_name): if blueprint_name in blueprints: bp = blueprints[blueprint_name] sd_prompts = random.choice(bp["sd_prompts"]) sd_cfg_scale = random.choice(bp["sd_cfg_scales"]) sd_num_inference_steps = random.choice(bp["sd_num_inference_steps"]) sd_sampler = random.choice(bp["sd_samplers"]) ollama_prompts = random.choice(bp["ollama_prompts"]) ollama_model = random.choice(bp["ollama_models"]) return ( sd_prompts, sd_cfg_scale, sd_num_inference_steps, sd_sampler, ollama_model, ollama_prompts ) return "", 7, 20, "ddpm", "aya", "" def apply_loaded_blueprint(prompt, cfg_scale, num_inference_steps, sampler, model, ollama_prompts): return ( gr.update(value=prompt), gr.update(value=cfg_scale), gr.update(value=num_inference_steps), gr.update(value=sampler), gr.update(value=model), gr.update(value=ollama_prompts) ) load_blueprint_btn.click(fn=load_blueprint, inputs=blueprint_dropdown, outputs=[sd_prompt_output, sd_cfg_output, sd_steps_output, sd_sampler_output, ollama_model_output, ollama_prompt_output]) load_blueprint_btn.click(fn=apply_loaded_blueprint, inputs=[sd_prompt_output, sd_cfg_output, sd_steps_output, sd_sampler_output, ollama_model_output, ollama_prompt_output], outputs=[prompt_input, cfg_scale, num_inference_steps, sampler, ollama_model_name, ollama_prompts]) with gr.Tab("Chatbot-Prompts"): with gr.Row(): with gr.Column(scale=1): from nanograd.models.GPT.tokenizer import tokenize gr.Markdown("