Eugeoter commited on
Commit
94b23c1
1 Parent(s): 2a7b4b3
Files changed (4) hide show
  1. .gitignore +164 -0
  2. app.py +28 -0
  3. requirements.txt +3 -0
  4. utils.py +128 -0
.gitignore ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110
+ .pdm.toml
111
+ .pdm-python
112
+ .pdm-build/
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
+
143
+ # mypy
144
+ .mypy_cache/
145
+ .dmypy.json
146
+ dmypy.json
147
+
148
+ # Pyre type checker
149
+ .pyre/
150
+
151
+ # pytype static type analyzer
152
+ .pytype/
153
+
154
+ # Cython debug symbols
155
+ cython_debug/
156
+
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
163
+
164
+ tmp.py
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import gradio as gr
3
+ import os
4
+ import spaces
5
+ from tqdm import tqdm
6
+ from PIL import Image
7
+ from utils import WaifuScorer
8
+
9
+ SCORER = WaifuScorer(
10
+ device='cuda',
11
+ verbose=True,
12
+ )
13
+
14
+
15
+ @spaces.GPU
16
+ def score_image(image: Image.Image) -> float:
17
+ return SCORER([image])[0]
18
+
19
+
20
+ demo = gr.Interface(
21
+ fn=score_image,
22
+ inputs=gr.Image(type='pil', label='Image'),
23
+ outputs=gr.Number(label='Score', precision=2),
24
+ title='Waifu Scorer V3',
25
+ description='''Score ranges from 0 to 10, higher is better.
26
+ [Github](https://github.com/Eugeoter/waifu-scorer) | [Model](https://huggingface.co/Eugeoter/waifu-scorer-v3) | [Inspiration](https://github.com/christophschuhmann/improved-aesthetic-predictor)''',
27
+ )
28
+ demo.queue().launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ safetensors
3
+ pytorch-lightning
utils.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch.nn as nn
4
+ import pytorch_lightning as pl
5
+ from typing import List, Union
6
+ from PIL import Image
7
+
8
+ WS_REPOS = ["Eugeoter/waifu-scorer-v3"]
9
+
10
+
11
+ class MLP(pl.LightningModule):
12
+ def __init__(self, input_size, xcol='emb', ycol='avg_rating', batch_norm=True):
13
+ super().__init__()
14
+ self.input_size = input_size
15
+ self.xcol = xcol
16
+ self.ycol = ycol
17
+ self.layers = nn.Sequential(
18
+ nn.Linear(self.input_size, 2048),
19
+ nn.ReLU(),
20
+ nn.BatchNorm1d(2048) if batch_norm else nn.Identity(),
21
+ nn.Dropout(0.3),
22
+ nn.Linear(2048, 512),
23
+ nn.ReLU(),
24
+ nn.BatchNorm1d(512) if batch_norm else nn.Identity(),
25
+ nn.Dropout(0.3),
26
+ nn.Linear(512, 256),
27
+ nn.ReLU(),
28
+ nn.BatchNorm1d(256) if batch_norm else nn.Identity(),
29
+ nn.Dropout(0.2),
30
+ nn.Linear(256, 128),
31
+ nn.ReLU(),
32
+ nn.BatchNorm1d(128) if batch_norm else nn.Identity(),
33
+ nn.Dropout(0.1),
34
+ nn.Linear(128, 32),
35
+ nn.ReLU(),
36
+ nn.Linear(32, 1)
37
+ )
38
+
39
+ def forward(self, x):
40
+ return self.layers(x)
41
+
42
+
43
+ class WaifuScorer(object):
44
+ def __init__(self, model_path=None, device='cuda', cache_dir=None, verbose=False):
45
+ self.verbose = verbose
46
+ if model_path is None:
47
+ model_path = repo2path(WS_REPOS[0])
48
+ if self.verbose:
49
+ print(f"model path not set, switch to default: `{model_path}`")
50
+ if not os.path.isfile(model_path):
51
+ model_path = download_from_url(model_path, cache_dir=cache_dir)
52
+
53
+ print(f"loading pretrained model from `{model_path}`")
54
+ self.mlp = load_model(model_path, input_size=768, device=device)
55
+ self.model2, self.preprocess = load_clip_models("ViT-L/14", device=device)
56
+ self.device = self.mlp.device
57
+ self.dtype = self.mlp.dtype
58
+ self.mlp.eval()
59
+
60
+ @torch.no_grad()
61
+ def __call__(self, images: List[Image.Image]) -> Union[List[float], float]:
62
+ if isinstance(images, Image.Image):
63
+ images = [images]
64
+ n = len(images)
65
+ if n == 1:
66
+ images = images*2 # batch norm
67
+ images = encode_images(images, self.model2, self.preprocess, device=self.device).to(device=self.device, dtype=self.dtype)
68
+ predictions = self.mlp(images)
69
+ scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
70
+ # if n == 1:
71
+ # scores = scores[0]
72
+ return scores
73
+
74
+
75
+ def repo2path(model_repo_and_path: str):
76
+ if os.path.isfile(model_repo_and_path):
77
+ model_path = model_repo_and_path
78
+ elif os.path.isdir(model_repo_and_path):
79
+ model_path = os.path.join(model_repo_and_path, "model.pth")
80
+ elif model_repo_and_path in WS_REPOS:
81
+ model_path = model_repo_and_path + '/model.pth'
82
+ else:
83
+ raise ValueError(f"Invalid model_repo_and_path: {model_repo_and_path}")
84
+ return model_path
85
+
86
+
87
+ def download_from_url(url, cache_dir=None, verbose=True):
88
+ from huggingface_hub import hf_hub_download
89
+ split = url.split("/")
90
+ username, repo_id, model_name = split[-3], split[-2], split[-1]
91
+ # if verbose:
92
+ # print(f"[download_from_url]: {username}/{repo_id}/{model_name}")
93
+ model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
94
+ return model_path
95
+
96
+
97
+ def load_clip_models(name: str = "ViT-L/14", device='cuda'):
98
+ import clip
99
+ model2, preprocess = clip.load(name, device=device) # RN50x64
100
+ return model2, preprocess
101
+
102
+
103
+ def load_model(model_path: str = None, input_size=768, device: str = 'cuda', dtype=None):
104
+ model = MLP(input_size=input_size)
105
+ if model_path:
106
+ s = torch.load(model_path, map_location=device)
107
+ model.load_state_dict(s)
108
+ model.to(device)
109
+ if dtype:
110
+ model = model.to(dtype=dtype)
111
+ return model
112
+
113
+
114
+ def normalized(a: torch.Tensor, order=2, dim=-1):
115
+ l2 = a.norm(order, dim, keepdim=True)
116
+ l2[l2 == 0] = 1
117
+ return a / l2
118
+
119
+
120
+ @torch.no_grad()
121
+ def encode_images(images: List[Image.Image], model2, preprocess, device='cuda') -> torch.Tensor:
122
+ if isinstance(images, Image.Image):
123
+ images = [images]
124
+ image_tensors = [preprocess(img).unsqueeze(0) for img in images]
125
+ image_batch = torch.cat(image_tensors).to(device)
126
+ image_features = model2.encode_image(image_batch)
127
+ im_emb_arr = normalized(image_features).cpu().float()
128
+ return im_emb_arr