File size: 5,884 Bytes
a02aab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import random
import gradio as gr
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import shap
import xgboost as xgb
from datasets import load_dataset
matplotlib.use("Agg")
dataset = load_dataset("scikit-learn/adult-census-income")
X_train = dataset["train"].to_pandas()
_ = X_train.pop("fnlwgt")
_ = X_train.pop("race")
y_train = X_train.pop("income")
y_train = (y_train == ">50K").astype(int)
categorical_columns = [
"workclass",
"education",
"marital.status",
"occupation",
"relationship",
"sex",
"native.country",
]
X_train = X_train.astype({col: "category" for col in categorical_columns})
data = xgb.DMatrix(X_train, label=y_train, enable_categorical=True)
model = xgb.train(params={"objective": "binary:logistic"}, dtrain=data)
explainer = shap.TreeExplainer(model)
def predict(*args):
df = pd.DataFrame([args], columns=X_train.columns)
df = df.astype({col: "category" for col in categorical_columns})
pos_pred = model.predict(xgb.DMatrix(df, enable_categorical=True))
return {">50K": float(pos_pred[0]), "<=50K": 1 - float(pos_pred[0])}
def interpret(*args):
df = pd.DataFrame([args], columns=X_train.columns)
df = df.astype({col: "category" for col in categorical_columns})
shap_values = explainer.shap_values(xgb.DMatrix(df, enable_categorical=True))
scores_desc = list(zip(shap_values[0], X_train.columns))
scores_desc = sorted(scores_desc)
fig_m = plt.figure(tight_layout=True)
plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
plt.title("Feature Shap Values")
plt.ylabel("Shap Value")
plt.xlabel("Feature")
plt.tight_layout()
return fig_m
unique_class = sorted(X_train["workclass"].unique())
unique_education = sorted(X_train["education"].unique())
unique_marital_status = sorted(X_train["marital.status"].unique())
unique_relationship = sorted(X_train["relationship"].unique())
unique_occupation = sorted(X_train["occupation"].unique())
unique_sex = sorted(X_train["sex"].unique())
unique_country = sorted(X_train["native.country"].unique())
with gr.Blocks() as demo:
gr.Markdown("""
## Income Classification with XGBoost 💰
This example shows how to load data from the hugging face hub to train an XGBoost classifier and
demo the predictions with gradio.
The source is [here](https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability).
""")
with gr.Row():
with gr.Column():
age = gr.Slider(label="Age", minimum=17, maximum=90, step=1, randomize=True)
work_class = gr.Dropdown(
label="Workclass",
choices=unique_class,
value=lambda: random.choice(unique_class),
)
education = gr.Dropdown(
label="Education Level",
choices=unique_education,
value=lambda: random.choice(unique_education),
)
years = gr.Slider(
label="Years of schooling",
minimum=1,
maximum=16,
step=1,
randomize=True,
)
marital_status = gr.Dropdown(
label="Marital Status",
choices=unique_marital_status,
value=lambda: random.choice(unique_marital_status),
)
occupation = gr.Dropdown(
label="Occupation",
choices=unique_occupation,
value=lambda: random.choice(unique_occupation),
)
relationship = gr.Dropdown(
label="Relationship Status",
choices=unique_relationship,
value=lambda: random.choice(unique_relationship),
)
sex = gr.Dropdown(
label="Sex", choices=unique_sex, value=lambda: random.choice(unique_sex)
)
capital_gain = gr.Slider(
label="Capital Gain",
minimum=0,
maximum=100000,
step=500,
randomize=True,
)
capital_loss = gr.Slider(
label="Capital Loss", minimum=0, maximum=10000, step=500, randomize=True
)
hours_per_week = gr.Slider(
label="Hours Per Week Worked", minimum=1, maximum=99, step=1
)
country = gr.Dropdown(
label="Native Country",
choices=unique_country,
value=lambda: random.choice(unique_country),
)
with gr.Column():
label = gr.Label()
plot = gr.Plot()
with gr.Row():
predict_btn = gr.Button(value="Predict")
interpret_btn = gr.Button(value="Interpret")
predict_btn.click(
predict,
inputs=[
age,
work_class,
education,
years,
marital_status,
occupation,
relationship,
sex,
capital_gain,
capital_loss,
hours_per_week,
country,
],
outputs=[label],
)
interpret_btn.click(
interpret,
inputs=[
age,
work_class,
education,
years,
marital_status,
occupation,
relationship,
sex,
capital_gain,
capital_loss,
hours_per_week,
country,
],
outputs=[plot],
)
demo.launch()
|