MotionCLR / scripts /generate.py
EvanTHU's picture
init demo
b887ad8 verified
raw
history blame
6.03 kB
import sys
import os
import torch
import numpy as np
from os.path import join as pjoin
import utils.paramUtil as paramUtil
from utils.plot_script import *
from utils.utils import *
from utils.motion_process import recover_from_ric
from accelerate.utils import set_seed
from models.gaussian_diffusion import DiffusePipeline
from options.generate_options import GenerateOptions
from utils.model_load import load_model_weights
from motion_loader import get_dataset_loader
from models import build_models
import yaml
from box import Box
def yaml_to_box(yaml_file):
with open(yaml_file, "r") as file:
yaml_data = yaml.safe_load(file)
return Box(yaml_data)
if __name__ == "__main__":
parser = GenerateOptions()
opt = parser.parse()
set_seed(opt.seed)
device_id = opt.gpu_id
device = torch.device("cuda:%d" % device_id if torch.cuda.is_available() else "cpu")
opt.device = device
assert opt.dataset_name == "t2m" or "kit"
# Using a text prompt for generation
if opt.text_prompt != "":
texts = [opt.text_prompt]
opt.num_samples = 1
motion_lens = [opt.motion_length * opt.fps]
# Or using texts (in .txt file) for generation
elif opt.input_text != "":
with open(opt.input_text, "r") as fr:
texts = [line.strip() for line in fr.readlines()]
opt.num_samples = len(texts)
if opt.input_lens != "":
with open(opt.input_lens, "r") as fr:
motion_lens = [int(line.strip()) for line in fr.readlines()]
assert len(texts) == len(
motion_lens
), f"Please ensure that the motion length in {opt.input_lens} corresponds to the text in {opt.input_text}."
else:
motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)]
# Or usining texts in dataset
else:
gen_datasetloader = get_dataset_loader(
opt, opt.num_samples, mode="hml_gt", split="test"
)
texts, _, motion_lens = next(iter(gen_datasetloader))
# edit mode
if opt.edit_mode:
edit_config = yaml_to_box("options/edit.yaml")
else:
edit_config = yaml_to_box("options/noedit.yaml")
print(edit_config)
ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + ".tar")
checkpoint = torch.load(ckpt_path,map_location={'cuda:0': str(device)})
niter = checkpoint.get('total_it', 0)
# make save dir
out_path = opt.output_dir
if out_path == "":
out_path = pjoin(opt.save_root, "samples_iter{}_seed{}".format(niter, opt.seed))
if opt.text_prompt != "":
out_path += "_" + opt.text_prompt.replace(" ", "_").replace(".", "")
elif opt.input_text != "":
out_path += "_" + os.path.basename(opt.input_text).replace(
".txt", ""
).replace(" ", "_").replace(".", "")
os.makedirs(out_path, exist_ok=True)
# load model
model = build_models(opt, edit_config=edit_config, out_path=out_path)
niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema)
# Create a pipeline for generation in diffusion model framework
pipeline = DiffusePipeline(
opt=opt,
model=model,
diffuser_name=opt.diffuser_name,
device=device,
num_inference_steps=opt.num_inference_steps,
torch_dtype=torch.float16,
)
# generate
pred_motions, _ = pipeline.generate(
texts, torch.LongTensor([int(x) for x in motion_lens])
)
# Convert the generated motion representaion into 3D joint coordinates and save as npy file
npy_dir = pjoin(out_path, "joints_npy")
root_dir = pjoin(out_path, "root_npy")
os.makedirs(npy_dir, exist_ok=True)
os.makedirs(root_dir, exist_ok=True)
print(f"saving results npy file (3d joints) to [{npy_dir}]")
mean = np.load(pjoin(opt.meta_dir, "mean.npy"))
std = np.load(pjoin(opt.meta_dir, "std.npy"))
samples = []
root_list = []
for i, motion in enumerate(pred_motions):
motion = motion.cpu().numpy() * std + mean
np.save(pjoin(npy_dir, f"raw_{i:02}.npy"), motion)
npy_name = f"{i:02}.npy"
# 1. recover 3d joints representation by ik
motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num)
# 2. put on Floor (Y axis)
floor_height = motion.min(dim=0)[0].min(dim=0)[0][1]
motion[:, :, 1] -= floor_height
motion = motion.numpy()
# 3. remove jitter
motion = motion_temporal_filter(motion, sigma=1)
# save root trajectory (Y axis)
root_trajectory = motion[:, 0, :]
root_list.append(root_trajectory)
np.save(pjoin(root_dir, f"root_{i:02}.npy"), root_trajectory)
y = root_trajectory[:, 1]
plt.figure()
plt.plot(y)
plt.legend()
plt.title("Root Joint Trajectory")
plt.xlabel("Frame")
plt.ylabel("Position")
plt.savefig("./root_trajectory_xyz.png")
np.save(pjoin(npy_dir, npy_name), motion)
samples.append(motion)
root_list_res = np.concatenate(root_list, axis=0)
np.save("root_list.npy", root_list_res)
# save the text and length conditions used for this generation
with open(pjoin(out_path, "results.txt"), "w") as fw:
fw.write("\n".join(texts))
with open(pjoin(out_path, "results_lens.txt"), "w") as fw:
fw.write("\n".join([str(l) for l in motion_lens]))
# skeletal animation visualization
print(f"saving motion videos to [{out_path}]...")
for i, title in enumerate(texts):
motion = samples[i]
fname = f"{i:02}.mp4"
kinematic_tree = (
paramUtil.t2m_kinematic_chain
if (opt.dataset_name == "t2m")
else paramUtil.kit_kinematic_chain
)
plot_3d_motion(
pjoin(out_path, fname),
kinematic_tree,
motion,
title=title,
fps=opt.fps,
radius=opt.radius,
)