Spaces:
Runtime error
Runtime error
import pinecone | |
index_name = "abstractive-question-answering" | |
# check if the abstractive-question-answering index exists | |
if index_name not in pinecone.list_indexes(): | |
# create the index if it does not exist | |
pinecone.create_index( | |
index_name, | |
dimension=768, | |
metric="cosine" | |
) | |
# connect to abstractive-question-answering index we created | |
index = pinecone.Index(index_name) | |
# we will use batches of 64 | |
batch_size = 64 | |
for i in tqdm(range(0, len(df), batch_size)): | |
# find end of batch | |
i_end = min(i+batch_size, len(df)) | |
# extract batch | |
batch = df.iloc[i:i_end] | |
# generate embeddings for batch | |
emb = retriever.encode(batch["passage_text"].tolist()).tolist() | |
# get metadata | |
meta = batch.to_dict(orient="records") | |
# create unique IDs | |
ids = [f"{idx}" for idx in range(i, i_end)] | |
# add all to upsert list | |
to_upsert = list(zip(ids, emb, meta)) | |
# upsert/insert these records to pinecone | |
_ = index.upsert(vectors=to_upsert) | |
# check that we have all vectors in index | |
index.describe_index_stats() | |
# from transformers import BartTokenizer, BartForConditionalGeneration | |
# # load bart tokenizer and model from huggingface | |
# tokenizer = BartTokenizer.from_pretrained('vblagoje/bart_lfqa') | |
# generator = BartForConditionalGeneration.from_pretrained('vblagoje/bart_lfqa') | |
# def query_pinecone(query, top_k): | |
# # generate embeddings for the query | |
# xq = retriever.encode([query]).tolist() | |
# # search pinecone index for context passage with the answer | |
# xc = index.query(xq, top_k=top_k, include_metadata=True) | |
# return xc | |
# def format_query(query, context): | |
# # extract passage_text from Pinecone search result and add the tag | |
# context = [f" {m['metadata']['passage_text']}" for m in context] | |
# # concatinate all context passages | |
# context = " ".join(context) | |
# # contcatinate the query and context passages | |
# query = f"question: {query} context: {context}" | |
# return query | |