Abhilashvj's picture
Update app.py
b77a2d3
raw
history blame
10.6 kB
import json
import logging
import os
import shutil
import sys
import uuid
from json import JSONDecodeError
from pathlib import Path
import pandas as pd
import pinecone
import streamlit as st
from annotated_text import annotation
from haystack import Document
from haystack.document_stores import PineconeDocumentStore
from haystack.nodes import (
DocxToTextConverter,
EmbeddingRetriever,
FARMReader,
FileTypeClassifier,
PDFToTextConverter,
PreProcessor,
TextConverter,
)
from haystack.pipelines import ExtractiveQAPipeline, Pipeline
from markdown import markdown
from sentence_transformers import SentenceTransformer
index_name = "qa_demo"
# connect to pinecone environment
pinecone.init(
api_key=st.secrets["pinecone_apikey"],
# environment="us-west1-gcp"
)
index_name = "qa-demo"
preprocessor = PreProcessor(
clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=False,
split_by="word",
split_length=100,
split_respect_sentence_boundary=True
)
file_type_classifier = FileTypeClassifier()
text_converter = TextConverter()
pdf_converter = PDFToTextConverter()
docx_converter = DocxToTextConverter()
# check if the abstractive-question-answering index exists
if index_name not in pinecone.list_indexes():
# create the index if it does not exist
pinecone.create_index(
index_name,
dimension=768,
metric="cosine"
)
# connect to abstractive-question-answering index we created
index = pinecone.Index(index_name)
FILE_UPLOAD_PATH= "./data/uploads/"
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
# @st.cache
def create_doc_store():
document_store = PineconeDocumentStore(
api_key= st.secrets["pinecone_apikey"],
index=index_name,
similarity="cosine",
embedding_dim=768
)
return document_store
# @st.cache
# def create_pipe(document_store):
# retriever = EmbeddingRetriever(
# document_store=document_store,
# embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
# model_format="sentence_transformers",
# )
# reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
# pipe = ExtractiveQAPipeline(reader, retriever)
# return pipe
def query(pipe, question, top_k_reader, top_k_retriever):
res = pipe.run(
query=question, params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}}
)
answer_df = []
# for r in res['answers']:
# ans_dict = res['answers'][0].meta
# ans_dict["answer"] = r.context
# answer_df.append(ans_dict)
# result = pd.DataFrame(answer_df)
# result.columns = ["Source","Title","Year","Link","Answer"]
# result[["Answer","Link","Source","Title","Year"]]
return res
document_store = create_doc_store()
# pipe = create_pipe(document_store)
retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model=retriever_model,
model_format="sentence_transformers",
)
# load the retriever model from huggingface model hub
sentence_encoder = SentenceTransformer(retriever_model)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
pipe = ExtractiveQAPipeline(reader, retriever)
indexing_pipeline_with_classification = Pipeline()
indexing_pipeline_with_classification.add_node(
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
)
indexing_pipeline_with_classification.add_node(
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
)
indexing_pipeline_with_classification.add_node(
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
)
indexing_pipeline_with_classification.add_node(
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
)
indexing_pipeline_with_classification.add_node(
component=preprocessor,
name="Preprocessor",
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
)
def set_state_if_absent(key, value):
if key not in st.session_state:
st.session_state[key] = value
# Adjust to a question that you would like users to see in the search bar when they load the UI:
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.")
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer")
# Sliders
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
st.set_page_config(page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png")
# Persistent state
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
set_state_if_absent("results", None)
# Small callback to reset the interface in case the text of the question changes
def reset_results(*args):
st.session_state.answer = None
st.session_state.results = None
st.session_state.raw_json = None
# Title
st.write("# GPT3 and Langchain Demo")
st.markdown(
"""
This demo takes its data from the documents uploaded to the Pinecone index through this app. \n
Ask any question from the uploaded documents and Pinecone will retrieve the context for answers and GPT3 will answer them using the retrieved context. \n
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
""",
unsafe_allow_html=True,
)
# Sidebar
st.sidebar.header("Options")
st.sidebar.write("## File Upload:")
data_files = st.sidebar.file_uploader(
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
)
ALL_FILES = []
META_DATA = []
for data_file in data_files:
# Upload file
if data_file:
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
with open(file_path, "wb") as f:
f.write(data_file.getbuffer())
ALL_FILES.append(file_path)
st.sidebar.write(str(data_file.name) + "    βœ… ")
META_DATA.append({"filename":data_file.name})
if len(ALL_FILES) > 0:
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
index_name = "qa_demo"
# we will use batches of 64
batch_size = 64
# docs = docs['documents']
with st.spinner(
"🧠    Performing indexing of uplaoded documents... \n "
):
for i in range(0, len(docs), batch_size):
# find end of batch
i_end = min(i+batch_size, len(docs))
# extract batch
batch = [doc.content for doc in docs[i:i_end]]
# generate embeddings for batch
emb = sentence_encoder.encode(batch).tolist()
# get metadata
meta = [doc.meta for doc in docs[i:i_end]]
# create unique IDs
ids = [doc.id for doc in docs[i:i_end]]
# add all to upsert list
to_upsert = list(zip(ids, emb, meta))
# upsert/insert these records to pinecone
_ = index.upsert(vectors=to_upsert)
top_k_reader = st.sidebar.slider(
"Max. number of answers",
min_value=1,
max_value=10,
value=DEFAULT_NUMBER_OF_ANSWERS,
step=1,
on_change=reset_results,
)
top_k_retriever = st.sidebar.slider(
"Max. number of documents from retriever",
min_value=1,
max_value=10,
value=DEFAULT_DOCS_FROM_RETRIEVER,
step=1,
on_change=reset_results,
)
# data_files = st.file_uploader(
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
# )
# for data_file in data_files:
# # Upload file
# if data_file:
# raw_json = upload_doc(data_file)
question = st.text_input(
value=st.session_state.question,
max_chars=100,
on_change=reset_results,
label="question",
label_visibility="hidden",
)
col1, col2 = st.columns(2)
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
# Run button
run_pressed = col1.button("Run")
if run_pressed:
run_query = (
run_pressed or question != st.session_state.question
)
# Get results for query
if run_query and question:
reset_results()
st.session_state.question = question
with st.spinner(
"🧠 &nbsp;&nbsp; Performing neural search on documents... \n "
):
try:
st.session_state.results = query(
pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
)
except JSONDecodeError as je:
st.error("πŸ‘“ &nbsp;&nbsp; An error occurred reading the results. Is the document store working?")
except Exception as e:
logging.exception(e)
if "The server is busy processing requests" in str(e) or "503" in str(e):
st.error("πŸ§‘β€πŸŒΎ &nbsp;&nbsp; All our workers are busy! Try again later.")
else:
st.error(f"🐞 &nbsp;&nbsp; An error occurred during the request. {str(e)}")
if st.session_state.results:
st.write("## Results:")
for count, result in enumerate(st.session_state.results['answers']):
answer, context = result.answer, result.context
start_idx = context.find(answer)
end_idx = start_idx + len(answer)
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
try:
source = f"[{result.meta['Title']}]({result.meta['link']})"
st.write(
markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
unsafe_allow_html=True,
)
except:
filename = result.meta.get('filename', "")
st.write(
markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
unsafe_allow_html=True,
)