Spaces:
Runtime error
Runtime error
import json | |
import logging | |
import os | |
import shutil | |
import sys | |
import uuid | |
from json import JSONDecodeError | |
from pathlib import Path | |
import pandas as pd | |
import pinecone | |
import streamlit as st | |
from annotated_text import annotation | |
from haystack import Document | |
from haystack.document_stores import PineconeDocumentStore | |
from haystack.nodes import ( | |
DocxToTextConverter, | |
EmbeddingRetriever, | |
FARMReader, | |
FileTypeClassifier, | |
PDFToTextConverter, | |
PreProcessor, | |
TextConverter, | |
) | |
from haystack.pipelines import ExtractiveQAPipeline, Pipeline | |
from markdown import markdown | |
from sentence_transformers import SentenceTransformer | |
index_name = "qa_demo" | |
# connect to pinecone environment | |
pinecone.init( | |
api_key=st.secrets["pinecone_apikey"], | |
# environment="us-west1-gcp" | |
) | |
index_name = "qa-demo" | |
preprocessor = PreProcessor( | |
clean_empty_lines=True, | |
clean_whitespace=True, | |
clean_header_footer=False, | |
split_by="word", | |
split_length=100, | |
split_respect_sentence_boundary=True | |
) | |
file_type_classifier = FileTypeClassifier() | |
text_converter = TextConverter() | |
pdf_converter = PDFToTextConverter() | |
docx_converter = DocxToTextConverter() | |
# check if the abstractive-question-answering index exists | |
if index_name not in pinecone.list_indexes(): | |
# create the index if it does not exist | |
pinecone.create_index( | |
index_name, | |
dimension=768, | |
metric="cosine" | |
) | |
# connect to abstractive-question-answering index we created | |
index = pinecone.Index(index_name) | |
FILE_UPLOAD_PATH= "./data/uploads/" | |
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True) | |
# @st.cache | |
def create_doc_store(): | |
document_store = PineconeDocumentStore( | |
api_key= st.secrets["pinecone_apikey"], | |
index=index_name, | |
similarity="cosine", | |
embedding_dim=768 | |
) | |
return document_store | |
# @st.cache | |
# def create_pipe(document_store): | |
# retriever = EmbeddingRetriever( | |
# document_store=document_store, | |
# embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", | |
# model_format="sentence_transformers", | |
# ) | |
# reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False) | |
# pipe = ExtractiveQAPipeline(reader, retriever) | |
# return pipe | |
def query(pipe, question, top_k_reader, top_k_retriever): | |
res = pipe.run( | |
query=question, params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}} | |
) | |
answer_df = [] | |
# for r in res['answers']: | |
# ans_dict = res['answers'][0].meta | |
# ans_dict["answer"] = r.context | |
# answer_df.append(ans_dict) | |
# result = pd.DataFrame(answer_df) | |
# result.columns = ["Source","Title","Year","Link","Answer"] | |
# result[["Answer","Link","Source","Title","Year"]] | |
return res | |
document_store = create_doc_store() | |
# pipe = create_pipe(document_store) | |
retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1" | |
retriever = EmbeddingRetriever( | |
document_store=document_store, | |
embedding_model=retriever_model, | |
model_format="sentence_transformers", | |
) | |
# load the retriever model from huggingface model hub | |
sentence_encoder = SentenceTransformer(retriever_model) | |
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False) | |
pipe = ExtractiveQAPipeline(reader, retriever) | |
indexing_pipeline_with_classification = Pipeline() | |
indexing_pipeline_with_classification.add_node( | |
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=preprocessor, | |
name="Preprocessor", | |
inputs=["TextConverter", "PdfConverter", "DocxConverter"], | |
) | |
def set_state_if_absent(key, value): | |
if key not in st.session_state: | |
st.session_state[key] = value | |
# Adjust to a question that you would like users to see in the search bar when they load the UI: | |
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.") | |
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer") | |
# Sliders | |
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3")) | |
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3")) | |
st.set_page_config(page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png") | |
# Persistent state | |
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP) | |
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP) | |
set_state_if_absent("results", None) | |
# Small callback to reset the interface in case the text of the question changes | |
def reset_results(*args): | |
st.session_state.answer = None | |
st.session_state.results = None | |
st.session_state.raw_json = None | |
# Title | |
st.write("# GPT3 and Langchain Demo") | |
st.markdown( | |
""" | |
This demo takes its data from the documents uploaded to the Pinecone index through this app. \n | |
Ask any question from the uploaded documents and Pinecone will retrieve the context for answers and GPT3 will answer them using the retrieved context. \n | |
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you. | |
""", | |
unsafe_allow_html=True, | |
) | |
# Sidebar | |
st.sidebar.header("Options") | |
st.sidebar.write("## File Upload:") | |
data_files = st.sidebar.file_uploader( | |
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden" | |
) | |
ALL_FILES = [] | |
META_DATA = [] | |
for data_file in data_files: | |
# Upload file | |
if data_file: | |
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}" | |
with open(file_path, "wb") as f: | |
f.write(data_file.getbuffer()) | |
ALL_FILES.append(file_path) | |
st.sidebar.write(str(data_file.name) + " β ") | |
META_DATA.append({"filename":data_file.name}) | |
if len(ALL_FILES) > 0: | |
# document_store.update_embeddings(retriever, update_existing_embeddings=False) | |
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"] | |
index_name = "qa_demo" | |
# we will use batches of 64 | |
batch_size = 64 | |
# docs = docs['documents'] | |
with st.spinner( | |
"π§ Performing indexing of uplaoded documents... \n " | |
): | |
for i in range(0, len(docs), batch_size): | |
# find end of batch | |
i_end = min(i+batch_size, len(docs)) | |
# extract batch | |
batch = [doc.content for doc in docs[i:i_end]] | |
# generate embeddings for batch | |
emb = sentence_encoder.encode(batch).tolist() | |
# get metadata | |
meta = [doc.meta for doc in docs[i:i_end]] | |
# create unique IDs | |
ids = [doc.id for doc in docs[i:i_end]] | |
# add all to upsert list | |
to_upsert = list(zip(ids, emb, meta)) | |
# upsert/insert these records to pinecone | |
_ = index.upsert(vectors=to_upsert) | |
top_k_reader = st.sidebar.slider( | |
"Max. number of answers", | |
min_value=1, | |
max_value=10, | |
value=DEFAULT_NUMBER_OF_ANSWERS, | |
step=1, | |
on_change=reset_results, | |
) | |
top_k_retriever = st.sidebar.slider( | |
"Max. number of documents from retriever", | |
min_value=1, | |
max_value=10, | |
value=DEFAULT_DOCS_FROM_RETRIEVER, | |
step=1, | |
on_change=reset_results, | |
) | |
# data_files = st.file_uploader( | |
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden" | |
# ) | |
# for data_file in data_files: | |
# # Upload file | |
# if data_file: | |
# raw_json = upload_doc(data_file) | |
question = st.text_input( | |
value=st.session_state.question, | |
max_chars=100, | |
on_change=reset_results, | |
label="question", | |
label_visibility="hidden", | |
) | |
col1, col2 = st.columns(2) | |
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) | |
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) | |
# Run button | |
run_pressed = col1.button("Run") | |
if run_pressed: | |
run_query = ( | |
run_pressed or question != st.session_state.question | |
) | |
# Get results for query | |
if run_query and question: | |
reset_results() | |
st.session_state.question = question | |
with st.spinner( | |
"π§ Performing neural search on documents... \n " | |
): | |
try: | |
st.session_state.results = query( | |
pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever | |
) | |
except JSONDecodeError as je: | |
st.error("π An error occurred reading the results. Is the document store working?") | |
except Exception as e: | |
logging.exception(e) | |
if "The server is busy processing requests" in str(e) or "503" in str(e): | |
st.error("π§βπΎ All our workers are busy! Try again later.") | |
else: | |
st.error(f"π An error occurred during the request. {str(e)}") | |
if st.session_state.results: | |
st.write("## Results:") | |
for count, result in enumerate(st.session_state.results['answers']): | |
answer, context = result.answer, result.context | |
start_idx = context.find(answer) | |
end_idx = start_idx + len(answer) | |
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190 | |
try: | |
source = f"[{result.meta['Title']}]({result.meta['link']})" | |
st.write( | |
markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '), | |
unsafe_allow_html=True, | |
) | |
except: | |
filename = result.meta.get('filename', "") | |
st.write( | |
markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '), | |
unsafe_allow_html=True, | |
) | |