File size: 18,602 Bytes
e1043c6 cf29d86 e1043c6 9c5e08b e1043c6 cf29d86 e22e877 e1043c6 8390a54 e1043c6 cf29d86 e1043c6 c00c6b5 cf29d86 52aa0e7 cf29d86 52aa0e7 cf29d86 52aa0e7 cf29d86 e1043c6 cf29d86 e1043c6 cf29d86 647c84c 433f9e3 e1043c6 cf29d86 e1043c6 cf29d86 e1043c6 cf29d86 e1043c6 cf29d86 e1043c6 cf29d86 8390a54 e1043c6 cf29d86 e1043c6 cf29d86 8390a54 e1043c6 8390a54 e1043c6 52aa0e7 e1043c6 25db2bc 4cef6e6 e1043c6 9f0fcf1 4bed9ae 9f0fcf1 256b2ce 9f0fcf1 4bed9ae e1043c6 c82fcd4 e1043c6 8390a54 e1043c6 9c54061 e1043c6 4cef6e6 e1043c6 647c84c e1043c6 647c84c e1043c6 cf29d86 e1043c6 afc5436 e1043c6 ed09eac e1043c6 74b3358 e1043c6 63a8691 e1043c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import json
import re
from collections import defaultdict
import evaluate
import nltk
import numpy as np
from nervaluate import Evaluator
from sacrebleu.metrics import BLEU, CHRF
from sklearn.metrics import f1_score
from tqdm import tqdm
from transformers import AutoTokenizer
import rouge
import bert_score
import string
def load_json(file_path):
with open(file_path, "r") as f:
return json.load(f)
def get_micro_at_k(gold, pred, k):
gold_set = set(gold)
pred_set = set(pred[:k])
return len(gold_set & pred_set), len(gold_set), len(pred_set)
def evaluate_bail(gold_data, pred_data):
gold_labels = []
pred_labels = []
for id, label in gold_data.items():
gold_labels.append(label)
pred_labels.append(pred_data.get(id, 0))
f1 = f1_score(gold_labels, pred_labels, average="macro")
print("Macro-F1 on HLDC-all-districts test set:", f1)
return {"mF1": f1*100}
def get_BLEU_score(ref_text_all, machine_text_all):
sc_all = []
for i in range(len(ref_text_all)):
ref_text = ref_text_all[i]
machine_text = machine_text_all[i]
tok_ref_text = nltk.word_tokenize(ref_text)
tok_machine_text = nltk.word_tokenize(machine_text)
sc = nltk.translate.bleu_score.sentence_bleu([tok_ref_text], tok_machine_text, weights = (0.5,0.5))
sc_all.append(sc)
return sum(sc_all)/len(sc_all)
def evaluate_cjpe(gold_data, pred_data):
# Evaluate prediction
gold_labels = []
pred_labels = []
for id, label in gold_data["prediction"].items():
gold_labels.append(label)
pred_labels.append(pred_data["prediction"].get(id, 0))
f1 = f1_score(gold_labels, pred_labels, average="macro")
prediction_result = {"cjpe-eval": f1}
print("Macro-F1 on ILDC test:", prediction_result)
R = []
B = []
rl_evaluator = rouge.Rouge(metrics=['rouge-l'], max_n=2, limit_length=False, apply_avg=True)
for x in range(1, 6):
gold_explanations = []
pred_explanations = []
for k,v in gold_data['explanation'].items():
gold_explanations.append(v[f'expert_{x}'])
pred_explanations.append(pred_data['explanation'][k])
print("Metrics for expert", x, "...", end=' ')
rougex = rl_evaluator.get_scores(pred_explanations, gold_explanations)['rouge-l']['f']
bleux = get_BLEU_score(gold_explanations, pred_explanations)
R.append(rougex)
B.append(bleux)
print("Done.")
rouge_score = sum(R)/len(R)
bleu_score = sum(B)/len(B)
explanation_result = {
"cjpe-exp-eval": {
"rouge": rouge_score,
"bleu": bleu_score,
}
}
print("Explanability for ILDC Expert:", explanation_result)
#return {**prediction_result, **explanation_result}
return {"cjpe-prediction": {"mF1": f1*100}, "cjpe-explanation": {"ROUGE-L": rouge_score*100, "BLEU": bleu_score*100}}
def span2bio(txt, roles):
roles = sorted(roles, key = lambda x:x['start'])
roles_left = [r['start'] for r in roles]
ttxt = re.findall(r'[{}]|\w+'.format(string.punctuation), txt)
c = 0
cr = -1
prev = 'O'
troles = []
for tok in ttxt:
if c >= len(txt):
break
while txt[c] == ' ':
c += 1
else:
if c in roles_left: # Start of a new role
ind = roles_left.index(c)
cr = roles[ind]['end']
prev = 'I-' + roles[ind]['label']
troles.append('B-' + roles[ind]['label'])
else:
if c < cr: # Assign previous role
troles.append(prev)
else: # Assign 'O'
troles.append('O')
c += len(tok)
if len(ttxt) != len(troles):
troles += ['O'] * (len(ttxt) - len(troles))
assert len(ttxt) == len(troles)
return ttxt, troles
def evaluate_lner(gold_data, pred_data, text_data):
with open("ner_labels.txt") as f:
labels = f.read().strip().split("\n")
results_per_fold = {}
for fold in range(1, len(gold_data) + 1):
gold = gold_data[f"fold_{fold}"]
pred = pred_data[f"fold_{fold}"]
text = text_data[f"fold_{fold}"]
texts, gold_labels, pred_labels = [], [], []
for id, gold_label in tqdm(gold.items()):
txt = text[id]
pred_label = pred.get(id, [])
txt_seg, gold_bio = span2bio(txt, gold_label)
_, pred_bio = span2bio(txt, pred_label)
texts.append(txt_seg)
gold_labels.append(gold_bio)
pred_labels.append(pred_bio)
evaluator = Evaluator(gold_labels, pred_labels, tags=labels, loader="list")
results, results_per_tag, _, _ = evaluator.evaluate()
f1_scores = [results_per_tag[l]["strict"]["f1"] for l in results_per_tag]
avg_f1 = sum(f1_scores) / len(f1_scores)
print(f"Strict Macro-F1 on Fold {fold}:", avg_f1)
results_per_fold[f"fold_{fold}"] = avg_f1
print("Strict macro-F1 on L-NER Dataset:", results_per_fold)
return {"strict mF1": sum(results_per_fold.values())/len(results_per_fold)*100}
def evaluate_rr(gold_data, pred_data):
all_gold_labels = []
all_pred_labels = []
with open("rr_label_vocab.json") as f:
label_vocab = json.load(f)
for id, gold_labels in gold_data.items():
pred_labels = pred_data.get(id, ["None"] * len(gold_labels))
for i in range(len(gold_labels)):
g = gold_labels[i]
p = pred_labels[i]
if g not in label_vocab: continue
for pp in p.split():
if pp in label_vocab:
p = pp
break
if p not in label_vocab: continue
all_gold_labels.append([label_vocab[g]])
all_pred_labels.append([label_vocab[p]])
f1 = f1_score(all_gold_labels, all_pred_labels, average="macro")
print(f"Macro-F1 on combined test set:", f1)
return {"mF1": f1*100}
def evaluate_lsi(gold_data, pred_data):
with open("lsi_label_vocab.json") as f:
label_vocab = json.load(f)
gold_matrix = np.zeros((len(gold_data), len(label_vocab)))
pred_matrix = np.zeros((len(gold_data), len(label_vocab)))
for i, (id, gold_labels) in enumerate(gold_data.items()):
pred_labels = pred_data.get(id, [])
for label in gold_labels:
if label in label_vocab:
gold_matrix[i, label_vocab[label]] = 1
for label in pred_labels:
if label in label_vocab:
pred_matrix[i, label_vocab[label]] = 1
f1 = f1_score(gold_matrix, pred_matrix, average="macro")
print("Macro-F1 on ILSI test set:", f1)
return {"mF1": f1*100}
def evaluate_pcr(gold_data, pred_data):
f1_scores = []
for k in range(1, 21):
correct, gold_total, pred_total = 0, 0, 0
for id, gold_candidates in tqdm(gold_data.items(), desc="pcr"):
pred_candidates = pred_data.get(id, [])
gold_candidates = [c for c in gold_candidates if c != id]
pred_candidates = [c for c in pred_candidates if c != id]
c, g, p = get_micro_at_k(gold_candidates, pred_candidates, k)
correct += c
gold_total += g
pred_total += p
precision = correct / pred_total if pred_total > 0 else 0
recall = correct / gold_total if gold_total > 0 else 0
f1 = (
2 * precision * recall / (precision + recall)
if precision + recall > 0
else 0
)
f1_scores.append(f1)
print(f"Micro-F1@{k} on IL-PCR test set:", f1)
max_f1 = max(f1_scores)
# index_max = f1_scores.index(max_f1) + 1
return {"muF1@K": f"{max_f1*100:.2f}"} #@{index_max}"}
def evaluate_summ(gold_data, pred_data):
gold_summaries = []
pred_summaries = []
for id, gold_summary in gold_data.items():
if id in pred_data:
gold_summary = re.sub(r"\s+", " ", gold_summary.replace("\n", " ")).strip()
pred_summary = re.sub(r"\s+", " ", pred_data[id].replace("\n", " ")).strip()
gold_summaries.append(gold_summary)
pred_summaries.append(pred_summary)
# rl_evaluator = rouge.Rouge(metrics=['rouge-l'], max_n=2, limit_length=False, apply_avg=True)
# rl_scores = rl_evaluator.get_scores(pred_summaries, gold_summaries)
# print("Rouge:", {k:v['f'] for k,v in rl_scores.items()}, flush=True)
_, _, bs = bert_score.score(pred_summaries, gold_summaries, lang="en", verbose=True)
print("BERTSCORE:", bs.mean().item())
# return {'ROUGE-L': rl_scores['rouge-l']['f'] * 100, 'BERTSCORE': bs.mean().item() * 100}
return {'ROUGE-L': '-', 'BERTSCORE': bs.mean().item() * 100}
def evaluate_lmt(gold_data, pred_data):
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert", use_fast=False)
bleu = BLEU()
chrfp = CHRF(word_order=2)
gleu = evaluate.load("google_bleu")
G = defaultdict(lambda: defaultdict(list))
P = defaultdict(lambda: defaultdict(list))
for dataset in gold_data:
for id, gold_text in gold_data[dataset].items():
lang = id.split("/")[1].strip()
gold_tokens = " ".join(tokenizer.tokenize(gold_text))
pred_tokens = " ".join(tokenizer.tokenize(pred_data[dataset][id]))
G[dataset][lang].append(gold_tokens)
P[dataset][lang].append(pred_tokens)
bleu_scores, chrfpp_scores, gleu_scores = [], [], []
for dataset in G:
print("Dataset", dataset)
dataset_bleu, dataset_chrfpp, dataset_gleu = [], [], []
for lang in G[dataset]:
gold = G[dataset][lang]
pred = P[dataset][lang]
bleu_score = bleu.corpus_score(pred, [gold]).score
chrfpp_score = chrfp.corpus_score(pred, [gold]).score
gleu_score = gleu.compute(predictions=pred, references=gold)["google_bleu"]
dataset_bleu.append(bleu_score)
dataset_chrfpp.append(chrfpp_score)
dataset_gleu.append(gleu_score)
bleu_scores.append(sum(dataset_bleu) / len(dataset_bleu))
chrfpp_scores.append(sum(dataset_chrfpp) / len(dataset_chrfpp))
gleu_scores.append(sum(dataset_gleu) / len(dataset_gleu))
return {
"BLEU": sum(bleu_scores) / len(bleu_scores),
"GLEU": sum(gleu_scores) / len(gleu_scores) * 100,
"chrF++": sum(chrfpp_scores) / len(chrfpp_scores),
}
def create_output_json(evaluation_results):
output = {
"Method": "Final Testing Random",
"Submitted By": "IL-TUR",
"Github Link": "dummy submission",
"L-NER": {"strict mF1": evaluation_results["lner"]["strict mF1"]},
"RR": {"mF1": evaluation_results["rr"]["mF1"]},
"CJPE": {
"mF1": evaluation_results["cjpe-prediction"]["mF1"],
"ROUGE-L": evaluation_results["cjpe-explanation"]["ROUGE-L"],
"BLEU": evaluation_results["cjpe-explanation"]["BLEU"],
},
"BAIL": {"mF1": evaluation_results["bail"]["mF1"]},
"LSI": {"mF1": evaluation_results["lsi"]["mF1"]},
"PCR": {"muF1@K": evaluation_results["pcr"]["muF1@K"]},
"SUMM": {
"ROUGE-L": evaluation_results["summ"]["ROUGE-L"],
"BERTSCORE": evaluation_results["summ"]["BERTSCORE"] #"-", # Placeholder BERTSCORE
},
"L-MT": {
"BLEU": evaluation_results["lmt"]["BLEU"],
"GLEU": evaluation_results["lmt"]["GLEU"],
"chrF++": evaluation_results["lmt"]["chrF++"],
},
}
return [output] # Wrap in a list to match the desired format
def main():
# gold_data = load_json("IL_TUR_eval_gold.json")
# pred_data = load_json("IL_TUR_eval_submission2.json")
gold_data = load_json("submissions/baseline/IL_TUR_eval_gold.json")
pred_data = load_json("submissions/baseline/IL_TUR_eval_submission_dummy.json")
pred_data = gold_data
evaluation_results = {}
for task in pred_data.keys():
print(f"Task: {task}")
if task == "bail":
evaluation_results[task] = evaluate_bail(gold_data[task], pred_data[task])
elif task == "cjpe":
nltk.download('punkt')
evaluation_results.update(evaluate_cjpe(gold_data[task], pred_data[task]))
elif task == "lner":
text_data = load_json("lner-text.json")
evaluation_results[task] = evaluate_lner(
gold_data[task], pred_data[task], text_data
)
elif task == "rr":
evaluation_results[task] = evaluate_rr(gold_data[task], pred_data[task])
elif task == "lsi":
evaluation_results[task] = evaluate_lsi(gold_data[task], pred_data[task])
elif task == "pcr":
evaluation_results[task] = evaluate_pcr(gold_data[task], pred_data[task])
elif task == "summ":
nltk.download('punkt')
evaluation_results[task] = evaluate_summ(gold_data[task], pred_data[task])
elif task == "lmt":
evaluation_results[task] = evaluate_lmt(gold_data[task], pred_data[task])
# convert the evaluation results to the required format
for task, result in evaluation_results.items():
if isinstance(result, dict):
for subtask, subresult in result.items():
if isinstance(subresult, dict):
for subsubtask, subsubresult in subresult.items():
evaluation_results[task][subtask][
subsubtask
] = f"{subsubresult:.2f}"
else:
if isinstance(subresult, str):
evaluation_results[task][subtask] = subresult
else:
evaluation_results[task][subtask] = f"{subresult:.2f}"
else:
if isinstance(result, str):
evaluation_results[task] = result
else:
evaluation_results[task] = f"{result:.2f}"
blank_scores = {
"lner": {"strict mF1": "-"},
"rr": {"mF1": "-"},
"cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"},
"bail": {"mF1": "-"},
"lsi": {"mF1": "-"},
"pcr": {"muF1@K": "-"},
"summ": {"ROUGE-L": "-", "BERTSCORE": "-"},
"lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"},
}
print("--------------------------Evaluation Summary--------------------------")
for task, result in evaluation_results.items():
print(f"{task}: {result}")
print("---------------------------------------------------------------------")
# for tasks that were not present in the submission, add blank scores
for task in gold_data.keys():
if task not in pred_data:
evaluation_results[task] = blank_scores[task]
# Generate the output JSON
output_json = create_output_json(evaluation_results)
with open("evaluation_results.json", "w") as f:
json.dump(output_json, f, indent=2)
print("Evaluation results saved to evaluation_results.json")
def get_evaluation_scores(gold_data, submission_data):
evaluation_results = {}
for task in submission_data.keys():
print(f"Task: {task}")
if task == "bail":
evaluation_results[task] = evaluate_bail(
gold_data[task], submission_data[task]
)
elif task == "cjpe":
nltk.download('punkt')
evaluation_results.update(
evaluate_cjpe(gold_data[task], submission_data[task])
)
elif task == "lner":
text_data = load_json("lner-text.json")
evaluation_results[task] = evaluate_lner(
gold_data[task], submission_data[task], text_data
)
elif task == "rr":
evaluation_results[task] = evaluate_rr(
gold_data[task], submission_data[task]
)
elif task == "lsi":
evaluation_results[task] = evaluate_lsi(
gold_data[task], submission_data[task]
)
elif task == "pcr":
evaluation_results[task] = evaluate_pcr(
gold_data[task], submission_data[task]
)
elif task == "summ":
nltk.download('punkt')
evaluation_results[task] = evaluate_summ(
gold_data[task], submission_data[task]
)
elif task == "lmt":
evaluation_results[task] = evaluate_lmt(
gold_data[task], submission_data[task]
)
# convert the evaluation results to the required format
for task, result in evaluation_results.items():
if isinstance(result, dict):
for subtask, subresult in result.items():
if isinstance(subresult, dict):
for subsubtask, subsubresult in subresult.items():
evaluation_results[task][subtask][
subsubtask
] = f"{subsubresult:.2f}"
else:
if isinstance(subresult, str):
evaluation_results[task][subtask] = subresult
else:
evaluation_results[task][subtask] = f"{subresult:.2f}"
else:
if isinstance(result, str):
evaluation_results[task] = result
else:
evaluation_results[task] = f"{result:.2f}"
blank_scores = {
"lner": {"strict mF1": "-"},
"rr": {"mF1": "-"},
"cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"},
"bail": {"mF1": "-"},
"lsi": {"mF1": "-"},
"pcr": {"muF1@K": "-"},
"summ": {"ROUGE-L": "-", "BERTSCORE": "-"},
"lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"},
}
# for tasks that were not present in the submission, add blank scores
for task in gold_data.keys():
if task not in submission_data:
evaluation_results[task] = blank_scores[task]
print("--------------------------Evaluation Summary--------------------------")
for task, result in evaluation_results.items():
print(f"{task}: {result}")
print("---------------------------------------------------------------------")
output_json = create_output_json(evaluation_results)
return output_json
if __name__ == "__main__":
main()
|