F00KEN commited on
Commit
44be8c8
Β·
1 Parent(s): c4b9521

e-motion project using gradio

Browse files
README.md CHANGED
@@ -1,12 +1,13 @@
1
  ---
2
  title: E Motion
3
- emoji: πŸ’»
4
- colorFrom: indigo
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 4.13.0
8
- app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: E Motion
3
+ emoji: πŸƒ
4
+ colorFrom: red
5
+ colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.13.0
8
+ app_file: /src/app.py
9
  pinned: false
10
+ license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
assets/e-motion_logo_17.svg ADDED
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Main dependencies
2
+
3
+ gradio==4.2.0
4
+ transformers==4.35.0
5
+ scipy==1.11.3
6
+ numpy==1.26.1
7
+ torch==1.12.1
8
+
9
+ # Development dependencies
10
+ pylint==3.0.2
11
+ isort==5.12.0
12
+ black==23.11.0
src/app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ """Main module to run the Gradio interface for sentiment analysis."""
2
+
3
+ from gradio_interface import demo
4
+
5
+ if __name__ == "__main__":
6
+ demo.launch(inbrowser=True)
src/gradio_interface.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module for setting up the Gradio interface for sentiment analysis."""
2
+ import pathlib
3
+
4
+ import gradio as gr
5
+ from twitter_roberta import predict_sentiment
6
+
7
+ theme = gr.themes.Base(
8
+ primary_hue="indigo",
9
+ font=[
10
+ gr.themes.GoogleFont("MD Mono"),
11
+ "ui-sans-serif",
12
+ "system-ui",
13
+ "sans-serif",
14
+ ],
15
+ font_mono=[
16
+ gr.themes.GoogleFont("Lato"),
17
+ "ui-monospace",
18
+ "Consolas",
19
+ "monospace",
20
+ ],
21
+ ).set(
22
+ body_background_fill_dark="linear-gradient(45deg, rgba(23,19,57,1) 0%, rgba(6,2,13,1) 100%);",
23
+ body_background_fill="linear-gradient(45deg, rgba(184,201,255,1) 0%, rgba(114,52,224,1) 100%);",
24
+ body_text_color="*primary_900",
25
+ body_text_color_subdued="*neutral_950",
26
+ body_text_color_subdued_dark="*primary_300",
27
+ button_secondary_background_fill="*primary_300",
28
+ button_secondary_background_fill_dark="*primary_600",
29
+ button_secondary_background_fill_hover="*primary_100",
30
+ button_secondary_background_fill_hover_dark="*primary_400",
31
+ button_secondary_text_color="*neutral_950",
32
+ )
33
+
34
+
35
+ # Set up the Gradio interface for the application.
36
+ with gr.Blocks(theme=theme, title="πŸ™‚ E-motion πŸ™ƒ") as demo:
37
+ with gr.Row():
38
+ with gr.Column(scale=3):
39
+ pass
40
+ with gr.Column(scale=1):
41
+ gr.Image(
42
+ "assets/e-motion_logo_17.svg", # Convert the Path object to a string
43
+ height=145,
44
+ show_download_button=False,
45
+ container=False,
46
+ interactive=False,
47
+ )
48
+ with gr.Column(scale=3):
49
+ pass
50
+ with gr.Row():
51
+ with gr.Column():
52
+ box = gr.Textbox(
53
+ placeholder="Type something to check sentiment! πŸ€”",
54
+ label="πŸš€ Give it a go!",
55
+ info="We are classifying meaning behind your text.",
56
+ max_lines=10,
57
+ )
58
+ gr.ClearButton(box)
59
+ with gr.Column():
60
+ outputs = gr.Label(
61
+ value="😴 nothing to show yet...",
62
+ num_top_classes=3,
63
+ label="results",
64
+ )
65
+ btn = gr.Button("Classify")
66
+ # pylint: disable=no-member
67
+ btn.click(predict_sentiment, inputs=[box], outputs=[outputs])
68
+ # pylint: enable=no-member
69
+ gr.Markdown("Choose some ideas from below and see what it brings you back:")
70
+ gr.Examples(
71
+ [
72
+ "I love you.",
73
+ "Do you wanna go eat something with us?",
74
+ "Go away!",
75
+ "Amazing work, I see some improvements to make though.",
76
+ "Are you out of your mind!?",
77
+ "I can't shake off this constant feeling of worry and fear. It's affecting my daily life, and I don't know how to cope.",
78
+ "I can't help but feel like I'm not good enough. No matter what I do, it feels like I'm always falling short.",
79
+ "I'm so tired of feeling like this. I just want to feel normal again.",
80
+ "I feel like I'm going crazy. I can't stop thinking about all the things that could go wrong.",
81
+ ],
82
+ inputs=[box],
83
+ )
84
+
85
+
86
+ if __name__ == "__main__":
87
+ demo.launch()
src/twitter_roberta.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module for handling Twitter RoBERTa model loading and sentiment prediction."""
2
+
3
+ import numpy as np
4
+ from scipy.special import softmax
5
+ from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
6
+
7
+ # Load tokenizer and model
8
+ MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
10
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL)
11
+ config = AutoConfig.from_pretrained(MODEL)
12
+
13
+
14
+ def preprocess(text: str) -> str:
15
+ """Preprocess the input text by replacing user mentions and URLs."""
16
+ return " ".join(
17
+ [
18
+ "@user" if t.startswith("@") else "http" if t.startswith("http") else t
19
+ for t in text.split()
20
+ ],
21
+ )
22
+
23
+
24
+ def predict_sentiment(text: str) -> dict:
25
+ """Predict the sentiment of the given text using the RoBERTa model."""
26
+ text = preprocess(text)
27
+ encoded_input = tokenizer(text, return_tensors="pt")
28
+ output = model(**encoded_input)
29
+ scores = output[0][0].detach().numpy()
30
+ scores = softmax(scores)
31
+ ranking = np.argsort(scores)[::-1]
32
+ return {config.id2label[rank]: np.round(float(scores[rank]), 4) for rank in ranking}