Spaces:
Runtime error
Runtime error
Fawaz
commited on
Commit
โข
3240876
1
Parent(s):
193c1e4
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Task22.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1yBvg6i_GsMk--P2nuSG-mfqCDbuIcEpx
|
8 |
+
|
9 |
+
# Task 2
|
10 |
+
- Raghad Al-Rasheed
|
11 |
+
- Fawwaz Alsheikhi
|
12 |
+
|
13 |
+
using the E5 model as the embedding model and translated dataset from huggingface
|
14 |
+
"""
|
15 |
+
|
16 |
+
!pip install sentence_transformers
|
17 |
+
|
18 |
+
"""## Downloading the Embedding model"""
|
19 |
+
|
20 |
+
from sentence_transformers import SentenceTransformer
|
21 |
+
import nltk
|
22 |
+
nltk.download('punkt')
|
23 |
+
from nltk.tokenize import word_tokenize
|
24 |
+
import math
|
25 |
+
from scipy import spatial
|
26 |
+
|
27 |
+
|
28 |
+
model = SentenceTransformer("intfloat/multilingual-e5-large").to('cuda')
|
29 |
+
|
30 |
+
"""## Downloading Translated data from english to arabic"""
|
31 |
+
|
32 |
+
!pip3 install datasets
|
33 |
+
from datasets import load_dataset
|
34 |
+
|
35 |
+
|
36 |
+
ds = load_dataset("Helsinki-NLP/news_commentary", "ar-en",split="train")
|
37 |
+
|
38 |
+
import pandas as pd
|
39 |
+
|
40 |
+
df = pd.DataFrame(ds['translation'])
|
41 |
+
|
42 |
+
df['ar']
|
43 |
+
|
44 |
+
df['ar'][0]
|
45 |
+
|
46 |
+
"""### Extracting the first 10000 rows out of the data"""
|
47 |
+
|
48 |
+
df=df.head(10000)
|
49 |
+
|
50 |
+
df['ar'].shape
|
51 |
+
|
52 |
+
documents =[doc for doc in df['ar']]
|
53 |
+
|
54 |
+
documents[9999]
|
55 |
+
|
56 |
+
"""## Embedding the sentences by rows"""
|
57 |
+
|
58 |
+
embeddings = model.encode(documents)
|
59 |
+
|
60 |
+
from sentence_transformers import SentenceTransformer
|
61 |
+
import nltk
|
62 |
+
nltk.download('punkt')
|
63 |
+
from nltk.tokenize import word_tokenize
|
64 |
+
import math
|
65 |
+
from scipy import spatial
|
66 |
+
import scipy
|
67 |
+
|
68 |
+
def semantic_search(query, embeddings, documents):
|
69 |
+
query_embedding = model.encode(query)
|
70 |
+
|
71 |
+
document_embeddings = embeddings
|
72 |
+
scores = [scipy.spatial.distance.cosine(query_embedding, doc) for doc in document_embeddings]
|
73 |
+
ls1 = list()
|
74 |
+
for i, score in enumerate(scores):
|
75 |
+
ls1.append([documents[i],score])
|
76 |
+
|
77 |
+
print(scores.index(min(scores)))
|
78 |
+
most_similar_doc = documents[scores.index(min(scores))]
|
79 |
+
print("Most similar document", most_similar_doc)
|
80 |
+
return ls1
|
81 |
+
|
82 |
+
output = semantic_search("ู ูู
ููู ู
ู ุงูุณูู ูุท ุฃู ููุฎุฑุท ุงูู
ุฑุก ูู ู
ุญุงุฏุซุฉ ุนููุงููุฉ ุญูู ููู
ุฉ ุงูุฐูุจ.",embeddings, documents)
|
83 |
+
|
84 |
+
documents[999]
|
85 |
+
|
86 |
+
"""### Extracting top three related sentences"""
|
87 |
+
|
88 |
+
ranked = sorted(output, key=lambda x: x[1])
|
89 |
+
ranked[:3]
|
90 |
+
|
91 |
+
df
|
92 |
+
|
93 |
+
"""## using english with arabic to see the semantic search of multilangual model"""
|
94 |
+
|
95 |
+
df['ar']
|
96 |
+
|
97 |
+
df['en']
|
98 |
+
|
99 |
+
df_ar = df['ar'].tolist()[:5000]
|
100 |
+
|
101 |
+
df_en = df['en'].tolist()[:5000]
|
102 |
+
|
103 |
+
combined_list = df_ar + df_en
|
104 |
+
|
105 |
+
print(len(combined_list))
|
106 |
+
|
107 |
+
embeddings1 = model.encode(combined_list)
|
108 |
+
|
109 |
+
from sentence_transformers import SentenceTransformer
|
110 |
+
import nltk
|
111 |
+
nltk.download('punkt')
|
112 |
+
from nltk.tokenize import word_tokenize
|
113 |
+
import math
|
114 |
+
from scipy import spatial
|
115 |
+
import scipy
|
116 |
+
|
117 |
+
def semantic_search(query, embeddings1, combined_list):
|
118 |
+
query_embedding = model.encode(query)
|
119 |
+
|
120 |
+
document_embeddings = embeddings1
|
121 |
+
scores = [scipy.spatial.distance.cosine(query_embedding, doc) for doc in document_embeddings]
|
122 |
+
ls1 = list()
|
123 |
+
for i, score in enumerate(scores):
|
124 |
+
ls1.append([combined_list[i],score])
|
125 |
+
|
126 |
+
print(scores.index(min(scores)))
|
127 |
+
most_similar_doc = combined_list[scores.index(min(scores))]
|
128 |
+
print("Most similar document", most_similar_doc)
|
129 |
+
return ls1
|
130 |
+
|
131 |
+
output = semantic_search("ูุฐูุจ ุจุนุดุฑุฉ ุขูุงู ุฏููุงุฑุ",embeddings1, combined_list)
|
132 |
+
|
133 |
+
ranked = sorted(output, key=lambda x: x[1])
|
134 |
+
ranked[:3]
|
135 |
+
|
136 |
+
import gradio as gr
|
137 |
+
|
138 |
+
demo = gr.Interface(fn=semantic_search,inputs = ["text"], outputs=["text", "text", "text"])
|
139 |
+
if __name__ == "__main__":
|
140 |
+
demo.launch()
|
141 |
+
|