Spaces:
Runtime error
Runtime error
File size: 14,598 Bytes
c47ce48 2b28767 c47ce48 2b28767 c47ce48 2b28767 c47ce48 e6b7acb c47ce48 2b28767 c47ce48 2b28767 c47ce48 2b28767 c47ce48 2b28767 c47ce48 d46d634 c47ce48 2b28767 c47ce48 e6b7acb b83ecf4 c47ce48 e6b7acb b83ecf4 c47ce48 2b28767 e6b7acb c47ce48 b98b814 c47ce48 b98b814 464d15d b98b814 3bb85ea b98b814 e6b7acb c47ce48 b98b814 2b28767 6c21d5f e6b7acb c47ce48 e6b7acb c47ce48 e6b7acb c47ce48 e6b7acb c47ce48 e6b7acb c47ce48 8ddedfc c47ce48 e5e4e13 c47ce48 e5e4e13 c47ce48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import datetime
import os
import re
import gc
import json
import time
import base64
import io
import tempfile
import zipfile
import PIL
import subprocess
from huggingface_hub import Repository
from utils import save_to_hub, save_to_local
from dataclasses import dataclass
from io import BytesIO
def sanitize_filename(filename):
"""Sanitizes a filename by replacing special characters with underscores"""
return re.sub(r'[\\/*?:"<>|]', "_", filename)
from typing import Optional, Literal, Union
from diffusers import (DiffusionPipeline, DDIMScheduler, DDPMScheduler, PNDMScheduler,
LMSDiscreteScheduler, EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler)
AVAILABLE_SCHEDULERS = {
"DDIM": DDIMScheduler,
"DDPM": DDPMScheduler,
"PNDM": PNDMScheduler,
"LMS Discrete": LMSDiscreteScheduler,
"Euler Discrete": EulerDiscreteScheduler,
"Euler Ancestral Discrete": EulerAncestralDiscreteScheduler,
"DPM Solver Multistep": DPMSolverMultistepScheduler,
"DPM Solver Singlestep": DPMSolverSinglestepScheduler,
}
HF_TOKEN = os.environ.get("HF_TOKEN")
import streamlit as st
st.set_page_config(layout="wide")
import torch
from diffusers import (
StableDiffusionPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionImg2ImgPipeline,
)
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from datetime import datetime
from threading import Thread
import requests
from huggingface_hub import HfApi
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._validators import HFValidationError
from loguru import logger
from PIL.PngImagePlugin import PngInfo
from st_clickable_images import clickable_images
import streamlit.components.v1 as components
prefix = 'image_generation'
def dict_to_style(d):
return ';'.join(f'{k}:{v}' for k, v in d.items())
def clickable_images(images, titles, div_style={}, img_style={}):
"""Generates a component with clickable images"""
img_tag = "".join(
f'<a href="{img}" target="_blank"><img src="{img}" title="{title}" style="{dict_to_style(img_style)}"></a>'
for img, title in zip(images, titles)
)
return components.html(f'<div style="{dict_to_style(div_style)}">{img_tag}</div>', scrolling=True)
def display_and_download_images(output_images, metadata):
with st.spinner("Preparing images..."):
# save images to a temporary directory
with tempfile.TemporaryDirectory() as tmpdir:
gallery_images = []
for i, image in enumerate(output_images):
image.save(os.path.join(tmpdir, f"{i + 1}.png"), pnginfo=metadata)
with open(os.path.join(tmpdir, f"{i + 1}.png"), "rb") as img:
encoded = base64.b64encode(img.read()).decode()
gallery_images.append(f"data:image/png;base64,{encoded}")
_ = clickable_images(
gallery_images,
titles=[f"Image #{str(i + 1)}" for i in range(len(gallery_images))],
div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
img_style={"margin": "5px", "height": "200px"},
)
PIPELINE_NAMES = Literal["txt2img", "inpaint", "img2img"]
DEFAULT_PROMPT = "sprinkled purple apple donut sitting on top of a ice table, colorful hyperrealism"
DEFAULT_WIDTH, DEFAULT_HEIGHT = 512, 512
OUTPUT_IMAGE_KEY = "output_img"
LOADED_IMAGE_KEY = "loaded_image"
def get_image(key: str) -> Optional[Image.Image]:
if key in st.session_state:
return st.session_state[key]
return None
def set_image(key: str, img: Image.Image):
st.session_state[key] = img
@st.cache_resource(max_entries=1)
def get_pipeline(
name: str,
scheduler_name: str = None,
) -> Union[
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
]:
if name in ["txt2img", "img2img"]:
model_id = "FFusion/FFusion-BaSE"
pipeline = DiffusionPipeline.from_pretrained(model_id)
# Use specified scheduler if provided, else use DDIMScheduler
if scheduler_name:
SchedulerClass = AVAILABLE_SCHEDULERS[scheduler_name]
pipeline.scheduler = SchedulerClass.from_config(
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
else:
pipeline.scheduler = DDIMScheduler.from_config(
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
pipeline = pipeline.to("cuda")
return pipeline
def generate(
prompt,
pipeline_name: PIPELINE_NAMES,
num_images=1,
negative_prompt=None,
steps=22,
width=896,
height=1024,
guidance_scale=6,
enable_attention_slicing=True,
enable_xformers=True
):
"""Generates an image based on the given prompt and pipeline name"""
negative_prompt = negative_prompt if negative_prompt else None
p = st.progress(0)
callback = lambda step, *_: p.progress(step / steps)
pipe = get_pipeline(pipeline_name)
torch.cuda.empty_cache()
if enable_attention_slicing:
pipe.enable_attention_slicing()
else:
pipe.disable_attention_slicing()
if enable_xformers:
pipe.enable_xformers_memory_efficient_attention()
kwargs = dict(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
callback=callback,
guidance_scale=guidance_scale,
guidance_rescale=0.7
)
if pipeline_name == "txt2img":
kwargs.update(width=width, height=height)
elif pipeline_name in ["inpaint", "img2img"]:
kwargs.update(image_input=image_input)
else:
raise Exception(
f"Cannot generate image for pipeline {pipeline_name} and {prompt}"
)
# Save images to Hugging Face Hub or locally
current_datetime = datetime.now()
metadata = {
"prompt": prompt,
"timestamp": str(current_datetime),
}
output_images = [] # list to hold output image objects
for _ in range(num_images): # loop over number of images
result = pipe(**kwargs) # generate one image at a time
images = result.images
for i, image in enumerate(images): # loop over each image
filename = (
"/data/"
+ sanitize_filename(re.sub(r"\s+", "_", prompt)[:50])
+ f"_{i}_{datetime.now().timestamp()}"
)
image.save(f"{filename}.png")
output_images.append(image) # add the image object to the list
# Save image to Hugging Face Hub
output_path = f"images/{i}.png"
save_to_hub(image, current_datetime, metadata, output_path)
for image in output_images:
with open(f"{filename}.txt", "w") as f:
f.write(prompt)
# After generating the images, clear the GPU cache
torch.cuda.empty_cache()
return output_images # return the list of image objects
def prompt_and_generate_button(prefix, pipeline_name: PIPELINE_NAMES, **kwargs):
col1, col2 = st.columns(2)
with col1:
prompt = st.text_area(
"Prompt",
value=DEFAULT_PROMPT,
key=f"{prefix}-prompt",
)
with col2:
negative_prompt = st.text_area(
"Negative prompt",
value="(disfigured), bad quality, ((bad art)), ((deformed)), ((extra limbs)), (((duplicate))), ((morbid)), (((ugly)), blurry, ((bad anatomy)), (((bad proportions))), cloned face, body out of frame, out of frame, bad anatomy, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), (fused fingers), (too many fingers), (((long neck))), Deformed, blurry",
key=f"{prefix}-negative-prompt",
)
col3, col4, col5 = st.columns(3)
with col3:
steps = st.slider("Number of inference steps", min_value=11, max_value=20, value=14, key=f"{prefix}-inference-steps")
with col4:
guidance_scale = st.slider(
"Guidance scale", min_value=0.0, max_value=20.0, value=7.5, step=0.5, key=f"{prefix}-guidance-scale"
)
with col5:
num_images = st.slider("Number of images to generate", min_value=1, max_value=2, value=1, key=f"{prefix}-num-images")
# Add a select box for the schedulers
scheduler_name = st.selectbox(
"Choose a Scheduler",
options=list(AVAILABLE_SCHEDULERS.keys()),
index=0, # Default index
key=f"{prefix}-scheduler",
)
scheduler_class = AVAILABLE_SCHEDULERS[scheduler_name] # Get the selected scheduler class
pipe = get_pipeline(pipeline_name, scheduler_name=scheduler_name)
# enable_attention_slicing = st.checkbox('Enable attention slicing (enables higher resolutions but is slower)', key=f"{prefix}-attention-slicing", value=True)
# enable_xformers = st.checkbox('Enable xformers library (better memory usage)', key=f"{prefix}-xformers", value=True)
images = []
if st.button("Generate images", key=f"{prefix}-btn"):
with st.spinner("Generating image..."):
images = generate(
prompt,
pipeline_name,
num_images=num_images, # add this
negative_prompt=negative_prompt,
steps=steps,
guidance_scale=guidance_scale,
enable_attention_slicing=True, # value always set to True
enable_xformers=True, # value always set to True
**kwargs,
)
for i, image in enumerate(images): # loop over each image
set_image(f"{OUTPUT_IMAGE_KEY}_{i}", image.copy()) # save each image with a unique key
image_indices = [int(key.split('_')[-1]) for key in st.session_state.keys() if OUTPUT_IMAGE_KEY in key]
cols = st.columns(len(image_indices) if image_indices else 1) # create a column for each image or a single one if no images
for i in range(max(image_indices) + 1 if image_indices else 1): # loop over each image index
output_image_key = f"{OUTPUT_IMAGE_KEY}_{i}"
output_image = get_image(output_image_key)
if output_image:
cols[i].image(output_image)
def width_and_height_sliders(prefix):
col1, col2 = st.columns(2)
with col1:
width = st.slider(
"Width",
min_value=768,
max_value=1024,
step=128,
value=768,
key=f"{prefix}-width",
)
with col2:
height = st.slider(
"Height",
min_value=768,
max_value=1024,
step=128,
value=768,
key=f"{prefix}-height",
)
return width, height
data_dir = "/data" # Update with the correct path
# Get all file names in the data directory
file_names = os.listdir(data_dir)
def txt2img_tab():
prefix = "txt2img"
width, height = width_and_height_sliders(prefix)
prompt_and_generate_button(prefix, "txt2img", width=width, height=height)
def inpainting_tab():
col1, col2 = st.columns(2)
with col1:
image_input, mask_input = inpainting()
with col2:
if image_input and mask_input:
prompt_and_generate_button(
"inpaint", "inpaint", image_input=image_input, mask_input=mask_input
)
def img2img_tab():
col1, col2 = st.columns(2)
with col1:
image = image_uploader("img2img")
if image:
st.image(image)
with col2:
if image:
prompt_and_generate_button("img2img", "img2img", image_input=image)
def main():
st.title("FFusion AI -beta- Playground")
st.markdown("""
[![Hugging Face Model](https://img.shields.io/badge/Hugging%20Face-FFusion--BaSE-blue)](https://huggingface.co/FFusion/FFusion-BaSE)
[![GitHub](https://img.shields.io/badge/GitHub-1e--2-green)](https://github.com/1e-2)
[![Facebook](https://img.shields.io/badge/Facebook-FFusionAI-blue)](https://www.facebook.com/FFusionAI/)
[![Civitai](https://img.shields.io/badge/Civitai-FFusionAI-blue)](https://civitai.com/models/82039/ffusion-ai-sd-21)
[![DOI](https://img.shields.io/badge/DOI-10.57967%2Fhf%2F0851-red)](https://huggingface.co/models?other=doi%3A10.57967%2Fhf%2F0851)
""")
tabs = ["FFusion BaSE 768+ (txt2img)"]
selected_tab = st.selectbox("Choose a di.FFusion.ai model", tabs)
if selected_tab == "FFusion BaSE 768+ (txt2img)":
txt2img_tab()
st.markdown("""
Models: [![FFusion-BaSE](https://img.shields.io/badge/2.1%20🤗%20Model-FFusion--BaSE-blue)](https://huggingface.co/FFusion/FFusion-BaSE) [![di.FFUSION.ai-v2.1-768-BaSE-alpha](https://img.shields.io/badge/🤗%20Model-di.FFUSION.ai--v2.1--768--BaSE--alpha-blue)](https://huggingface.co/FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha)
[![di.ffusion.ai.Beta512](https://img.shields.io/badge/2.1%20🤗%20Model-di.ffusion.ai.Beta512-blue)](https://huggingface.co/FFusion/di.ffusion.ai.Beta512) [![FFUSION.ai-Text-Encoder-LyCORIS-SD-2.1](https://img.shields.io/badge/2.1%20🤗%20Model-FFUSION.ai--Text--Encoder--LyCORIS--SD--2.1-blue)](https://huggingface.co/FFusion/FFUSION.ai-Text-Encoder-LyCORIS-SD-2.1)
Contact: [![Email](https://img.shields.io/badge/Email-di%40ffusion.ai-blue)](mailto:di@ffusion.ai)
""")
st.header("Citation")
"""
```
@misc {ffusion_ai_2023,
author = { {FFusion AI} },
title = { FFusion-BaSE (Revision ba72848) },
year = 2023,
url = { https://huggingface.co/FFusion/FFusion-BaSE },
doi = { 10.57967/hf/0851 },
publisher = { Hugging Face }
} http://doi.org/10.57967/hf/0851
```
"""
"""
Please note that the demo is intended for academic and research purposes ONLY. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use. By interacting within this environment, you hereby acknowledge and agree to the terms of the CreativeML Open RAIL-M License.
"""
if __name__ == "__main__":
main() |